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Executive Summary

The objective of this effort is to complete a refined benefits assessment of
applying MCTMA to meter the arrival flowsinto the Philadelphia TRACON (PHL) and
the New York TRACON (N90). Specificaly, the goals are to define and quantify the
potential NAS-wide benefits of MCTMA for arecent year and year 2015, and to develop
amethodology that NASA can use to extrapolate these benefits to other years and other
sitesfor alife-cycle cost-benefit assessment of MCTMA. The following report presents
the final results of this study.

General Approach

Figure 1 illustrates the general approach by which the benefits of MCTMA are
identified and analyzed. First, in order to identify the benefits of MCTMA the current
operations at PHL and N90 are assessed to determine their constraints. The MCTMA
functionality is also assessed. Then the McCTMA benefit mechanisms are identified by
applying the McTMA functions to alleviate the identified constraints of the current
operations.
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\ / | Sensitivity
. ___l.-{ Analysis and
Benefit Benefit | T ! Extrapolation
Mechanism Mechanisms [ 7
Identification
Y. ‘
E.g. Traffic Flow Model Technical
Demand ETAs : and
Model \ Algorlthms_ Economic
Ejﬁéﬁﬁi”;wg I\E/Iffgfl | Performance
_ E.g. ode i
Capacity | __—" Under-Tool oo Analysis
Model Ea. Operations (E.g. Delay,
Throughput)

Figure 1. General benefit analysis approach.

After identification of the key benefit mechanisms of MCTMA relative to current
operations, the current (baseline) system and that as enhanced by McTMA are modeled
using atraffic flow model, such that the benefit mechanisms are represented and
analyzed. The flow model includes models of the system demand and of the system
capacity, which are input to metering algorithms representing the baseline and MCTMA
operations. The output of the metering algorithmsis adjusted through an error model that
represents deviations from the desired output due to human and other error sources.

The traffic flow model provides the mathematical abstraction and quantitative
metrics in order to measure and compare the performance of the two systems and
quantify the benefits of MCTMA. An analytical framework based on queuing systemsis
presented in Section 2. This framework provides aterminology and a quantitative
framework to model the baseline constraints, the McTMA functions, and the benefit



mechanisms. Therefore, the current operations and constraints described in Sections 3
and 4, the McTMA functions described in Section 5, and the benefit mechanisms
described in Section 6, are modeled quantitatively in the context of this queuing
analytical framework, in each section.

As shown in Figure 1, the output of the flow model is then analyzed in order to
determine the system technical performance in terms of delay, throughput, and fuel burn.
The technical performance of the system is then converted into economic terms, and the
economic benefits of MCTMA measured. The benefit estimates are finally tested through
sensitivity analysis and extrapolated to future years and to other sites.

| dentification and modeling of traffic demand, capacity, and traffic management
procedures

In order to identify the constraints in the current operations a careful assessment
was required of the arrival flows into PHL and N90 and of the current procedures
followed in managing and metering these flows. This assessment also led to modeling the
arrival demand, modeling the capacity of the system, and modeling the current operations
baseline, as described in Section 3.

While the PHL airspace and arrival flows were elaborately studied and described
in previous efforts (for example, RTO16 and RTO33 [7]), the N9O airspace and arrival
flows were not studied as elaborately prior to this effort. Because it was essential to
understand the current flows and operations in order to conduct this study, a significant
effort was expended on analyzing the N90 flows based on documentations (such as
Standard Operating Procedures of N90 and the surrounding ARTCCs ZNY, ZBW, ZDC,
and ZOB and L etters of Agreements between these facilities) and based on information
collected through expert elicitation at each of these facilities. Site visits were conducted
in the week of November 18" 2002, to each of the above facilities and Traffic
Management Coordinators (TMCs) were interviewed.

Demand modeling

These efforts resulted in identifying the arrival flowsto PHL and the four major
N90 airports analyzed (JFK, EWR, LGA, and TEB) and the meter fixes along these flows
where MCTMA sequencing and scheduling of aircraft may be applied. One example of
the flow networks developed is presented in Figure 2 below. The network includes 3
tiers, each presented in a different color. The arrows in the figure represent the flows
modeled. Meter fixes on the flows were specified according to an approach suggested by
NASA McTMA researchers. This approach consisted of the specification of meter fixes
as close to sector boundaries as possible, but also at flow merge points. Meter fix arcs
were also specified in some cases, instead of meter fix points, to ensure that as much
traffic as possible is metered, as shown in the figure. The flows are presented for all five
airports analyzed in this study in Appendix A, along with further details on how they
were generated. These flow networks constituted the underlying structure for modeling
the arrival demand.
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Figure 2. Arrival flow network into JFK

Using historical aircraft position information from ETMS and Host radar tracking
data, statistical models of unimpeded transition times between successive meter fixes
were generated and used to estimate times of arrival at the meter fixes and at the
runways. These statistical models were generated using subsets of flights that encoutered
no or small queues and took into account wind, aircraft type, and airport runway
configuration. Variability in the estimated times of arrival was modeled by sampling
expected unimpeded transition times for each flight from the statistical distributions
determined. The flow networks and estimated times of arrival constituted demand input
to the algorithms representing McTMA and baseline metering functions and a basis for
computing delay in both actual traffic and simulated operations.

These statistical models for unimpeded transition time were tested against
trajectory based unimpeded transition times. The trajectories were generated using the
CTAS Trajectory Synthesizer process, which isthe model used for generating TMA and
MCcTMA estimated times of arrival. These trgjectories are generated according to aflight
plan and a performance model for each aircraft, and taking wind into account. The
statistical models performance compared well to the trgjectory based model performance,
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with the median of the differences between the models being between 0.0 and 1.6
minutes, thus giving confidence in their representation of the basis for computing delays.

Capacity modeling

The assessment of the current system constraints included a detailed quantitative
analysis of the capacities of the 5 airports studied. This analysis was completed using
data from the FAA’s Aviation System Performance Metrics (ASPM) database.

In order to determine the arrival acceptance rate (AAR) of arunway system,
throughput is plotted against demand for each of the commonly reported acceptance rates
at each airport as shown in Figure 3. It is clear that the throughput increases linearly with
demand, until a maximum is approached, at which point throughput drops off as demand
increases. The saturation level is set mainly by the safety separation requirements
between aircraft and by controller workload, and is used as an estimate of the maximum
service rate capacity of the runway system. The drop may be due to, among other factors,
controller workload constraints and airspace complexity constraints. In order to estimate
the actual arrival rate capacity of the airport, a hyperbolic curve isfitted to the average
throughput with demand less than the drop off point (the dashed line in Figure 3). The
second plot in Figure 5 showing the frequency of the demand in 4 aircraft per hour bins
shows that the mgjority of data pointsfall to the left of this drop-off in throughput. The
hyperbolic curve fit asymptotes to throughput equaling demand on the left and to a
maximum throughput on the right. This maximum throughput represents the actual
capacity operated at the airport, for the reported AAR under question. Because the
hyperbolic curve isfitted to the average arrival throughput, this actual capacity represents
an arrival capacity average over arange of other varying factors including, for example,
departure rate.
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Figure 1. Average throughput versus demand for Newark airport with areported AAR of
44 aircraft per hour; June, July and August, 2001.

The ASPM capacity analysis also resulted in airport capacity envelopes such as
that presented in Figure 4 being identified for the most common configurations operated
at each airport. These capacity envelopes plot the arrival throughput versus the departure
throughput for each time period and represent the dependence of the arrival rate capacity
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on the departure rate. The capacity envelopes also represent other arrival capacity
constraints such as the wake vortex separation requirements and controller workload. A
number of percentile capacity envelopes are shown in Figure 4. These capacity models
were used as an input to the algorithms representing McTMA and baseline metering
functions. The 99" percentile measured from half hour throughput data was considered in
this study as a conservative maximum safe capacity limit for arunway configuration, as
described later and in Section 7 of the report. The asymptotic capacity, computed from
the hyperbolic fit described in Figure 3 above and representing the current operated
capacity for the runway configuration, is superimposed in Figure 4 showing how it
compares to the different capacity envelope percentiles. Details of the capacity analysis
are given in Section 3 and Appendix B.
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Figure 4. Capacity envelope for PHL with areported AAR of 52 ac/hr, showing the
asymﬁtotic capacity envelope (thick dashed red), modeled capacity envelopes for the 90"
to 99™ percentiles capacities per quarter hour (thin blue), and the 99™ percentile capacity
envelope per half hour (thick black).

One observation made in the capacity analysis was that the N9O airspace often
constitutes the main flow constraint (bottleneck) to the arrival flows into the N9O airports.
This observation was indicated by the N90 TMC during the site visit and was al'so
observed in the capacity analysis presented in Section 3.1. Using historical ASPM data
analysisit was observed that the four major airports of N90 (JFK, EWR, LGA, and TEB)
are underutilized as a whole (when considered as one landing resource) more than each
airport is underutilized separately. However, because MCTMA uses airport acceptance
rates (AAR) as the applied constraint, an N90 arrival rate capacity was not applied as a
constraint to either the baseline or MCTMA models in this study.



Baseline modeling

A baseline model that represents the current traffic management procedures was
developed and used to measure the benefits of MCTMA over current operations in 2003
and in future years. Thismodel consisted of aMilesIn Trail (MIT) restriction generation
component, a MIT spacing component and a TRACON delay component. Each of these
components were derived from and calibrated against actual operation data from facility
logs and traffic tracks for November 2003, as detailed in Section 4.

The MIT restriction generation model computed MIT restrictions imposed at the
arrival fixes based on airport demand and capacity, and MIT restrictions propagated to
upstream boundaries between facilities based on fix demand. The timing and value of the
MIT restrictions were derived from analysis of one month of facility logs (November
2003) and were aso based on procedures elicited from TMCs during the site visits. They
were used to predict the MIT restrictions that would be imposed in future years for the
extrapolation of the MCTMA benefits.

The MIT spacing model calculated the delay resulting from imposing the MIT
restrictions. The MIT restrictions were obtained from the facility logs for the current year
and from the MIT restriction generation model for the future years. The MIT spacing
model represented deviations from the MIT restrictions imposed as determined from the
model calibration against the delay measured in actual operations.

The TRACON delay model calculated the delay imposed in the TRACON in
order to satisfy the airport AAR. The traffic enters the TRACON already separated by the
MIT restrictions according to the MIT spacing model and any additional delay needed to
be absorbed in the TRACON is added by the TRACON delay model. The AAR for each
runway configuration was cal culated based on calibrating the modeled delay and
throughput against those observed in actual operations.

| dentification and modeling of McTMA functions and benefit mechanisms

In order to identify the benefit mechanisms of MCTMA a careful assessment of
the McTMA functionality was accomplished by analyzing McTMA literature and
through consultation with NASA’s McTMA researchers. The McTMA functions
identified are described in Section 5 of this report along with the algorithms that were
developed for their simulation. While benefit mechanisms were derived for all the
identified functions, only the most important functions (based on NASA’ s feedback)
were modeled and their benefits assessed quantitatively. The functions that were
ultimately modeled are:

Time based metering, with “delay feedback” and “ capacity distribution”
Dynamic metering

Tiered metering

Multiple facility coordination

Internal departure scheduling

agrwbdE

The benefit mechanisms of MCTMA were then derived by applying each of the
McTMA functions to alleviate identified constraints and limitations in the current
operations. In order to achieve clarity, consistency, and completeness in identifying the
benefit mechanisms, formal definitions of functions, benefits, and benefit mechanisms,



and aformal procedure for mapping benefits of MCTMA functions were established. The
mapping of functions into quantifiable benefits was presented in chartsin order to
facilitate review by NASA’s MCTMA researchers. An example chart isgivenin Figure 5
below. The derivation of benefit mechanismsis described in Section 6 of this report.

Adequate time P Increase specified
Freeze )
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Aircraft o
et No rippling of Reduced variability
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Avoid under
of flow from cteri @)
different streams metering
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metering available capacity
More accurate metering Avoid over (fewer idle slots)
to match capacity "] metering

Figure 5. Benefits of time based metering

Conservatively and due to time and resource limitations, not all of the identified
benefit mechanisms were modeled and analyzed in this study. The benefit mechanisms
not analyzed are indicated with dashed arrows in the benefit mechanisms chartsin
Section 6. The benefit mechanisms analyzed included mainly:

e Time based metering with its high resolution, no upstream rippling of delay, and
accurate balancing between flows from different streams.

o Delay feedback to higher upstream altitudes

e Capacity distribution through distributed scheduling between multiple tires

e Reduced errors in meeting the STAs due to freezing the STAs within a freeze horizon
and affording controllers more time and |ess workload to better meet the STASs

e Higher capacity constraints (closer to the available maximum capacity of the airports)
are allowed through a number of the benefit mechanisms as indicated in the chartsin
Section 6

e Dynamic metering leading to canceling the effect of accumulated errors in meeting
the STA between multipletiers

e Improved balancing between arrival flows through improved coordination between
multiple facilities in multiple tiers

e Improved timing of applying metering through better visualization of demand and
capacity and better prediction of demand and delays

e Delay of internal departures on the ground before takeoff

The benefit mechanisms not analyzed included most notably:

e Switching flights between arrival flows through improved coordination and
offloading between facilities
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e Improved decisions to shut off the traffic in extreme situations causing no-notice
holding

e Interaction with facilities outside of the MCTMA system such as the Command
Center or other ARTCCsto reduce the use or severity of ground delay programs or
MIT restrictions upstream of the MCTMA system

e More optimized delay on the ground for internal departures

An agorithm that mimicsthe TMA sequencing and scheduling algorithm [4] was
used to assign scheduled times of arrival (STA) to aircraft at meter fixes. Flights are
assigned scheduled times of arrival at meter fixes in the flow networks to reduce airport
arrival throughput below the applied airport capacity and to feedback delay to upstream
tiers when the delay absorption capacities of sectors along the route are reached. An error
in meeting the scheduled times of arrival was also modeled, according to a normal
distribution centered on zero and with a standard deviation of 90 sec. The benefit
mechanisms were represented through certain model parameters as described under each
benefit mechanism in Section 6.

Technical and economic benefits

The technical performance benefits of MCTMA with regard to delay, throughput,
and fuel burn savings were estimated relative to baseline delay, throughput, and fuel
burn. Section 7 presents these technical performance benefits. In Section 8 of the report
the technical performance benefitsidentified in Section 7 are converted into economic
terms.

Fifteen days from November 2003 were simulated, the benefits were cal culated
per flight and per day, and were extrapolated to the year according to when demand
exceeds capacity. Thisis because benefits are a function of how much metering is
applied, on any given day, and flights are metered under MCTMA operations when
demand exceeds capacity. The fifteen days were selected according to data completeness
and represented a random and wide range of metering conditions (demand exceeding
capacity).

MCcTMA generates STAs based on satisfying an AAR constraint, which was one
of the key parametersin the MCTMA simulation. The arrival rate constraint applied in
each 15 minute period, given the number of departuresin the period, was read off the
capacity envelopes relating arrival and departure rates described in Section 3.1.1. The
capacities imposed on the baseline TRACON model (the capacity envelope percentiles
that resulted in the best baseline model calibration as described in Section 4) represent the
capacity operated under current procedures. MCTMA is, however, expected to result in an
increase in the throughput by increased utilization of the available maximum safe
capacity limit, as described in Section 6.2. A range of benefits were thus calculated by
applying arange of capacities above those that calibrated the baseline model, thus
modeling benefits due to an increase in capacity utilization under MCTMA operations.

It was assumed that MCTMA will be limited by runway safety requirements and
local operational constraints such as gridlock and controller workload. It was assumed
that the 99" percentile of the capacity envelopes calculated per half hour (as described in
Section 3.1.1) represent the maximum safe throughput limit for each runway
configuration. This maximum is determined by the number of runways, the runway
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configuration and the wake vortex separation requirement. The 99" percentileisa
conservative choice because the 100™ percentile may include possible violations of the
safety regquirements due to controller human error. It is also conservative because it
averages the throughput data available in 15 minute intervals, reducing the binning error.
It was assumed that this maximum safety limit will not be increased due to the
application of MCTMA’ s time based metering since MCTMA will not impact the number
of runways and wake vortex separations. Any applied capacity constraint for which this
maximum safety constraint was not violated by the arrival throughput any more than in
actual operations (calculated from actual landing times) was considered to meet the safety
requirements. The throughput was permitted to violate the safety constraint to the same
extent as actual operations allowing the same level of safety as currently practiced. The
highest percentiles of the capacity envelopes that met this criterion were applied and the
corresponding benefits considered the highest benefits achievable by MCTMA. This high
limit does not necessarily represent what controllers may achieve in practice under
MCcTMA operation, but rather only what is possible and available to achieve.

Figure 6 displays the benefit estimates at each airport for the range of capacity
constraints applied (as percentages of the capacity envelopes at each airport) between the
capacity that calibrated the baseline model (representing no capacity increase due to
McTMA) and the 98" percentile of the capacity envelopes. The nominal benefits case
corresponding to the maximum safe capacity limit that MCTMA may impose at each
airport isindicated on each range with a circle. Numbers are shown in Table 1
corresponding to the minimum (no capacity increase) and nominal yearly expected
benefits under MCTMA.

Operating Cost

Savings [US $] @ Nominal benefits case

$25,000,000
—¢—PHL

$20,000,000 - ——LGA
—e—EWR

$15,000,000 - JFK
—A—TEB

$10,000,000 -

$5,000,000 -
$0 A !

87% 88% 89% 90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%
Percentile of Throughput

Figure 6. Y early increase in operating profit due to McTMA, 2003 — varying applied
airport capacity under MCTMA.
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Table 1. Yearly increase in operating profit due to McTMA, 2003.

2003 Yearly Savings
Airport [US$ / year]
No Capacity Increase With Capacity Increase
PHL 1,302,000 17,275,000
LGA 1,141,000 11,810,000
EWR 1,343,000 12,817,000
JFK 1,268,000 3,289,000
TEB 4,000 383,000

Another key parameter in estimating the MCTMA benefits was the duration of
metering periods over which time based metering was applied in the MCTMA simulation
and MIT was applied in the baseline simulation. According to consultation with MCTMA
researchers time based metering was applied when demand was expected to exceed the
reported capacity of an airport. However, as expected to be the casein MCTMA
operation, delay savings were counted only after the delay requirement exceeded two
minutes (which may be absorbed within the TRACON) and until the delay requirement is
reduced to zero. Minimum metering durations of 30 minute and minimum time
separation between metering periods of 30 minute, were imposed. In the baseline model
MIT were applied during the MIT periods according to the facility logs.

Sensitivity analysis

The sensitivity of the resultsin Table 1 to changes in a number of parameters
relating to the benefit mechanisms and to the modeling was studied. These parameters
were arrival capacity (shown in Figure 6), sector capacities (for feedback of delay
upstream under MCTMA operations), error in meeting scheduled times of arrival,
operating cost per flight, and metering periods, including the minimum duration of
metering, and the criteriafor initiating metering. The results showed high sensitivity to
the applied arrival capacity, the mean error in meeting scheduled times of arrival, and the
criteriafor initiating metering. The results of the sensitivity analysis are presented in
Section 9.

Extrapolation to future years and other facilities

Extrapolation to benefits for 2010, 2015 and 2025 were completed according to
forecast demand in these future years. Baseline operations in the future years were
modeled by applying increased MIT restrictions, as calculated from the MIT generation
model, to the increased arrival demand. The demand was increased maintaining the
temporal and spatial dynamics of the current schedule at each airport. The results are
presented in Table 2. The results for LGA plateau because forecast demand is capped
after 2005.
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Table 2. Yearly increase in operating profit dueto MCTMA, extrapolated to 2010, 2015,

2025 (in 2003 US Dollars).

Yearly Savings
Airport [2003 US$ / year]
2003 2010 2015 2025

PHL 17,275,000 56,538,000 94,779,000 363,808,000
EWR 11,810,000 28,569,000 29,480,000 29,409,000
LGA 12,817,000 96,655,000 196,430,000 520,122,000
JFK 3,289,000 14,595,000 40,253,000 172,494,000
TEB 383,000 605,000 1,635,000 12,922,000

It isimportant to note that the delay levels for the simulated 2015 results were
very high under both current operations and MCTMA operations. Thisis because the
demand increase forecast by the FAA APO TAF [17] is not feasible given the capacity
applied, under current operations or MCTMA operations. This observation is consistent
with [18], which suggests that current demand forecasts do not adequately account for
capacity constraints.

A model for extrapolating the benefit estimates to other MCTMA sites was also
built as shown in the equation below. The model is based on queuing dynamics relating
the benefits (or delay savings) to the number of delay operations (47rOps), the percentage
of time demand exceeds capacity (Pp-¢) and the utilization of available capacity (Util) at
an airport. The model parameters were selected such that they may be calculated from
available data sources such as ASPM, and was calibrated against the five airports
anayzed to determine the constant values.

AI"}"OpS erda
Benefits =19,366 x L
1-(0.0213)(P,. . )(Util)

Final remarks

The benefit estimates of MCTMA assessed in this study are believed to be
realistic, robust, and conservative for a number of reasons:

1. A large sample of days was analyzed representing a random and wide range of
metering conditions. Days or periods of time when the system was thought to be
restricted by constraintsirrelevant to McTMA (or not included in this study) such as
local restrictions not related to runway capacity or strategic restrictions like ground
delay programs, were excluded. This was done in order to limit the benefits
assessment conservatively to those delays that MCTMA is believed to mitigate.

2. The benefit estimates resulted from comparing aMcTMA model of time based
metering to amodel of baseline operations using distance based metering. Care was
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taken to model in the baseline only procedures and dynamics that are relevant to
MCcTMA (such as MIT delay propagated from the runway and not local MIT, local
rerouting, or GDP).

. The delays were measured with respect to unimpeded estimated times of arrival
derived from statistical models based on analysis of historical track data. The
statistical unimpeded times took wind, aircraft type, and runway configuration into
account. They compared well to estimated times of arrival computed from trajectory
synthesis (the CTAS Tragjectory Synthesizer process) based on flight plan, wind, and
aircraft performance.

. The benefits assessment focused on a subset of MCTMA functions as described in

Section 5.

Due to time and resource limitations, not all of the benefit mechani sms were model ed
and analyzed in this study. The benefit mechanisms not analyzed are indicated with
dashed arrows in the benefit mechanisms charts in Section 6.

. Care was taken to make conservative assumptions about the MCTMA operation in the
field and about modeling parameters, and to consult NASA’s MCTMA researchers
and their experience with the tool and in the field. Through sensitivity analysis
(described in Section 9) arange was tested for many of these assumptions and
parameters to provide arange of corresponding benefit estimates and to assess how
much of an impact such assumptions and parameters have on the benefit estimates.
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1. Introduction

The Traffic Management Advisor (TMA) is adecision support tool — one of the
Center TRACON Automation System (CTAYS) suite of decision support tools. It is
developed by NASA Ames Advanced Air Transportation Technologies (AATT) Project
to improve the performance of arrival flows into congested terminal areas. The
underlying concept of TMA is atime-based metering technique that generates a
sequence, a schedule, and arunway allocation for aircraft arriving at TRACON feeding
gates[1,2,3,4]. TMA has successfully been implemented for a number of Terminal Radar
Controls (TRACONS) fed by asingle Air Route Traffic Control Center (ARTCC) [1,3].

Multi-Center TMA (McTMA) is an extension of TMA designed for a TRACON
with multiple feeding centers, which is particularly characteristic of the US northeast
airspace [2,3]. MCTMA is essentially a network of communicating TMAS that are
deployed at the multiple ATC facilities that feed a particular TRACON and are modified
to accommodate the multiple-center environment. MCTMA is currently being
implemented at Philadelphia TRACON (PHL), which receives traffic from New Y ork
ARTCC (ZNY) and Washington ARTCC (ZDC) [2,3]. MCTMA implementation is
expected at New Y ork TRACON (N90), which receives traffic from ZNY, ZDC, and
Boston ARTCC (ZBW).

In addition to dealing with metering TRACON arrival flows being fed from
multiple centers, MCTMA extends the metering horizon upstream to multiple centers
when needed. Thisisrequired in the case of the PHL and N9O (northeast) environment,
where some centers feeding the TRACON, particularly ZNY, are small in size and do not
provide enough time and space horizon to meter the arrival flowsinto PHL and N9O [5].
MCTMA in this case starts metering the PHL and N90 arrival flows from the time they
enter ZOB or from within ZOB. Therefore, the McTMA environment may involve
multiple centers extending multiple tiers from the destination airport or TRACON, as
well as multiple centers within each tier.



2. Approach and Methodology

Figure 1 illustrates the general approach by which the benefits of MCTMA are
identified and analyzed. First the McTMA benefit mechanisms are identified as described
in Section 2.1, then the performance of the operations under McCTMA and under current
operations are modeled using a traffic flow model and compared, as described in Section
2.2. Finally the technical performance is converted to economic terms, sensitivity
analysis and extrapolation of the benefits to future years and other MCTMA sites are
performed as described in Section 2.3.

Assessment of Assessment of CParameter |
Current Operations Tool Functions | Variation for
\ / | Sensitivity
, ... Analysis and
Benefit Benefit e | Extrapolation
Mechanism Mechanisms 7
Identification )
) "
E.g. Traffic Flow Model Technical
Demand ETAs _ g
Model \ Algorithms A omic
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Throughput)

Figure 1. General benefit analysis approach.

2.1. Identification of Benefit Mechanisms

First, the benefit mechanisms of MCTMA areidentified. In order to ensure that as
many benefits are captured as possible, the applicability of the benefit mechanisms
identified, and feedback from MCTMA researchers, it is essential that aformal,
reviewable approach to the identification of the benefit mechanisms be devel oped.
Therefore, for the purpose of clarity, consistency, and completeness, functions,
constraints and benefits are formally defined as follows:

e A Function isauser utility of the tool.

e A system Constraint is any condition that causes demand to exceed capacity of a
NAS resource.

e A Benefit isaquantifiable performance advantage or operational enhancement that
has a direct stakeholder impact.

e An Economic Benefit is abenefit directly quantifiable in monetary terms, and leads
directly from a Benefit.



e A Benefit Mechanism is alinkage that converts a function into a benefit by applying
the function to alleviate system Constraints.

A function excites a benefit mechanism, which creates a benefit.

Based on these definitions, the benefit mechanism identification approach
includes the following primary components:

1. Identification of current operations, including identification of current system flow
constraints and flow management procedures

| dentification of the McCTMA functionality

Identification of the benefits of each McTMA function by applying the function to
aleviate the identified system constraints and limitations of the current operations.
This includes mapping separate benefit mechanisms for each function according to
the constraints of current operations.

By identifying McTMA functionality before the identification of benefit
mechanismsit is ensured that benefits from all MCTMA functions are accounted for. The
approach issimilar to that used in TO10 [6] and TO33 [7], athough it includes amore
rigorous identification of benefits. The current constraints, McTMA functionality and
McTMA benefit mechanismsidentified are detailed in Sections 3, 5 and 6, respectively,
along with details of the modeling of each.

2.2. Traffic Flow Model and Baseline Comparison

After identification of the key benefit mechanisms of MCTMA relative to current
operations, the current (baseline) system and that as enhanced by MCTMA are analyzed
accordingly, using atraffic flow model. The traffic flow model provides the mathematical
abstraction and quantitative metrics in order to measure and compare the performance of
the two systems.

The traffic flow model includes algorithms that represent the metering processes
of both MCTMA and of the current operations. Inputs to the flow model come from a
model of the system demand and of the system capacity. The output of the metering
model is adjusted through an error model that represents deviations from the desired
output due to human and other error sources. The output of the flow model is then
analyzed in order to determine the system performance.

2.2.1. Queuing Network Abstraction

In order to provide a quantitative framework with which to analyze and compare
the dynamics and performance of the arrival process under McTMA, and under the
current system, the arrival processis abstracted to a queuing network. This queuing
network forms the basis of the flow model of the arrival process. The network includes
multiple tiers of fixes at which metering takes place, feeding into one or more airports.
Figure 2 illustrates this schematically for the flows into JFK, through hypothetical meter
fixes.



Figure 2. Schematic arrival queuing network for JFK.

The queues represent delay absorbed through ATC interventions such as holding,
speed reduction and vectoring. Queues are limited in capacity according to how much
delay is able to be absorbed in the available airspace. Metering the flow into a resource
by limiting the flow through the upstream resource is used to reduce the adverse effects
of high demand or reduced capacity.

In order to illustrate the process of metering the arrival flow and to define key
variables that will be used in the system modeling and benefit analysis, a core el ement of
the queuing network is presented in Figure 3. This core element contains a resource that
constrains the flow and a resource used to meter the flow, along with their associated
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Figure 3. Schematic of queuing network applied to arrival process sub-component.



The system can be described in terms of queuing abstraction as follows:

e A resource, such asarunway or meter fix, can service aircraft at an average service
rate 1. This service rate represents the finite capacity of the resource to serve aircraft,
due mainly to safety separation and workload constraints. Each resource in the system
has a service rate, but under high system demand or reduced capacity, the slowest
resource becomes the binding constraint on the flow. This resource is the bottleneck
or constraining resource.

e Airline scheduled traffic arrives at each fix, i, at an average arrival rate Ai. The
demand at afix istypically represented by a series of Estimated Times of Arrival
(ETA) calculated based on the airline schedules and flight plans. When an aircraft
arrives at afix at atime later than its ETA it incurs adelay D. Delays occur when the
demand is higher than the service capacity.

e Even when the average arrival rate is less than the average service rate, the aircraft
may incur adelay due to the variability in the demand (represented by the standard
deviation of the inter-arrival times, o) and the variability in the service rate
(represented by the standard deviation in the inter-service times, o).

e Delay can be absorbed in the sector airspace between fixes through vectoring, speed
reduction and holding. The amount of delay that can be absorbed in any resourceis
limited to afinite capacity due to workload and safety separation constraints. The
capacity of a sector istypically measured by an Operational Acceptable Level of
Traffic (OALT)™. This number specifies the maximum number of aircraft that can be
within the sector at a given time, and corresponds to an acceptable level of absorbable
delay. When more delay must be absorbed than this limit, the excess delay needed to
be absorbed is propagated to the upstream resource, to be absorbed there. Thisis
known as blocking, in which a resource blocks further acceptance of traffic, leading
to the propagation of delays upstream.

e During rush periods scheduled demand is often higher than capacity, due to airline
and passenger scheduling preferences. On average, however, demand must be
maintained below capacity, so as to avoid an unstable growth in delays. The degree to
which the demand matches the capacity can be measured by the ratio of average
demand A to average capacity u. Thisis called the utilization p of the resource given
in Equation (1):

o=t M
U

! According to correspondence with a TMC, the OALT is a number agreed upon by a member from
management (usually the Area Operations Manager) and Area NATCA representatives. The number they
come up with is then incorporated into the Monitor Alert; another representation of the OALT istherefore,
the Monitor Alert Parameter (MAP). The Monitor Alert Parameters (MAP) can be adjusted by + 3 minutes
by traffic management for various traffic management issues. Many times the numbers identified for a
specific sector are incorrect - aknown shortfall of the Monitor Alert Program.



¢ When demand is higher than capacity, metering is a process that attempts to match
the demand with the service rate capacity of a downstream resource in order to
distribute the delays upstream. The flow is metered from the un-metered demand A, to
ametered demand Am. Downstream of the metering resource the arrival rate into the
downstream resource is the metered demand A,. The metering of the flow at the
metering resource is according to constraints fed back from downstream.

e The actual flow through the system, or system throughput 7, is dependent on the
demand and metering in the system. When capacity exceeds demand, throughput
equals demand. However, when demand exceeds capacity, throughput is instead
determined by the capacity of the constraining resource.

If the metering were excessive, the metered demand would also be less than the
capacity of the constraining resource ., leading to lost capacity. However, in order to
minimize this lost capacity, the flow can be metered to a level greater than the capacity of
the constraining resource | to maintain pressure on it.

The impact of changesin demand, capacity, their variability and their ratio
(utilization), on delay, can be understood by considering the heavy traffic approximation
for a G/G/1 queuing system (general inter-arrival distribution/general service
distribution/single server), as follows:

2 2
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Where I, represents the average wait time in the queue, or average aircraft delay

D. Equation (2) can be used to gain insight into the behavior of the system in terms of
tradeoffs between delay and throughput, and to estimate general trends and verify results
approximately. Clearly, as metered demand A, or variabilities 6y or o decrease, the
average delay also decreases, as expected. Similarly, an increase in capacity p (reduction
in p) resultsin adecrease in average delay. However, if variabilities oy or o5 decrease, or
capacity increases, and the average delay was maintained at the same (acceptable) level,
it is possible to increase the demand and hence the throughput of the system.

2.2.2. McTMA and Baseline Comparison Methodology

The queuing abstraction described in Section 2.2.1 provides a common
framework to describe and quantify the dynamics and performance of the arrival process,
and metering in particular, under both the current operations and under MCTMA. When
demand is higher than capacity the current ATC system utilizes mainly MilesIn Trail,
which is a distance-based metering technique that requires aircraft to be spaced, at a
specified fix, by a certain number of miles. Alternatively, MCTMA provided atime-based
metering technique used to sequence and schedule aircraft at meter fixes. The
performance of the operations with the use of MCTMA’ s time based metering technique
isto be compared to the performance of the current baseline operations using the distance
based MilesIn Trail.



In order to measure the performance of the operations with the use of MCTMA,
these operations need to be simulated. An algorithm that mimicsthe TMA sequencing
and scheduling algorithm [4] was used to assign scheduled times of arrival to aircraft at
meter fixes. A selection of meter fixes for N9O is suggested in this report (Appendix A)
and was adjusted based on NASA'’ s feedback. 2

The approach in this study was to compare the performance of the smulated
operations with the use of MCTMA to the performance of the modeled operations under
current procedures as a baseline. The baselines that were compared in the study are,
therefore, shown in Figure 4. The baseline model of the current operations was generated
using actual traffic datafor particular days when Miles In Trail were used to meter the
arrival flow into PHL and N9O. Traffic data (aircraft radar-tracked positions) were
obtained from NASA in two forms, Host data and Enhanced Traffic Management System
(ETMYS) data, for 11 days in August and September of 2002 and for the month of
November 2003. Command Center and local facility logs for these days were also made
available through NASA in electronic or paper form.

Actual Current
i Traffic Data

AC(;U;"_ ‘?'fga”d __ | Calibrated Model of
and eic Current Operations
parameters

Actua demand

and M_CTM/-\ J  MCTMA Time-Based
operational Metering Model
parameters

Figure 4. Comparison of MCTMA and baseline operations

A baseline model was used rather than actual traffic data because actual data may
provide a misleading baseline for a number of reasons. One reason is that the actual

2 |t was intended to analyze two modes of MCTMA operation representing an incremental use of the tool. In
the first mode McTMA would be used as a demand visualization/situation awareness tool that would be
available to TMCs before the ATC siteis converted to the use of time-based metering. In this mode the tool
would help the TMCs in the selection of more optimal MIT restrictions given the demand predicted more
accurately by McTMA. In the second mode the time based metering function of MCTMA isused. Thefirst
mode of operation would be modeled as awhat-if type capability to assist in the selection of MIT
restrictions. However, due to time constraints, and because such afunction is not currently intended for
MCcTMA [2], neither incrementally nor on a permanent basis, the analysis of this mode of operation was
dropped in favor of higher priority analyses.



traffic data represents a manifestation of all the sources of inefficiency in the current
operations, not al of which may be addressed by McTMA. If using actual data, care must
be taken to exclude the non-relevant sources of inefficiency when selecting actua traffic
samples for measuring the baseline performance. Failure to do so renders the estimated
benefits optimistic. Another reason that actual traffic data may provide a misleading
baseline is the discrepancy between the reported information and the actual performance
of the system. For example, the actual data often does not accurately reflect the effect of
the specified restrictions reportedly imposed at a given time. In many cases the system
outperforms, in terms of delay and throughput, the performance expected given the
imposed restrictions. (For example, when 15 milesin trail are specified often 13 milesin
trail may be imposed in practice, resulting in a higher throughput than expected have 15
milesin trail been imposed.)® Failure to account for such an inaccuracy renders the
estimated benefits conservative and often negative. Another difficulty with the actual
traffic dataisitsincompleteness and its inaccuracy in measuring the performance of the
system. For example, actual aircraft positions from radar tracking systems may be
available through Host computers with12-second intervals, or from ETM S with one-
minute intervals. Therefore, Host track datais more accurate in measuring fix crossing
times and landing times. Therefore, using actua traffic data as a baseline can result in
conservative or optimistic benefits estimates if not selected carefully. For this reason, the
current operations were simulated instead. Examples of such an approach include the
benefit study of Regional Metering, a potential enhancement to TMA/McTMA, TO71
[8], which used simulated current operations as a baseline instead of using the actual data.
TO71 used for the baseline an algorithm that selects optimal MIT restrictions.

Simulation allows concentrating on the elements that are believed to be relevant
to the benefits assessment by excluding the sources of inefficiency that may not be
mitigated by McTMA. The performance of the actual operations isimportant for the
purpose of calibration of the simulated baseline and for the identification of the available
pool of inefficiencies in the current operations and the fraction of it that MCTMA
mitigates. In order to exclude sources of inefficiency that MCTMA may not address,
particular days when only MilesIn Trail were in effect were selected for calibration.
These days (15 in total) represented a variety of demand levels and of constraints severity
and included occurrences of holding and thunderstorms.* Facility logs indicated what
restrictions were imposed on each day. The traffic demand was then run through
simulations that represented the operations under current operations, and the performance
compared to the actual traffic datafor calibration.

2.2.3. Site Visits for Identification of Current Operations

In order to identify the benefits of applying McTMA to the PHL and N90 arrival
flows, the current operations and current flow constraints must be well understood and

% The deviation from the restrictionsis due to a number of reasons including human error and the non-
dynamic nature of the restrictions.

* It was intended to analyze days when other restrictions, such as a Ground Delay Program, were in effect,
and to analyze the impact of MCTMA on reducing the delays imposed by such more severe flow
management restrictions. However, due to time limitations this was not accomplished.



analyzed. As described in Section 2.2.2, the current performance of the system provides a
basis for comparison with the system performance under MCTMA.

Through site visits to the main ATC facilities that control the flowsinto PHL and
N90 (N90, ZNY, ZBW, ZOB and ZDC?) a number of insights were gained into the flows,
capacity constraints, and flow management procedures at these facilities. Husni Idris and
Antony Evans from Titan, and two McTMA researchers, Todd Farley from NASA Ames,
and Steve Landry from Raytheon, participated in the site visits. One facility was visited
on each day of the week of November 18" 2002, in the order listed above. At each
facility one or two traffic managers were assigned to the team to describe the flows and
operations and to address questions. Copies of the Standard Operating Procedures (SOPs)
of each facility and the Letters Of Agreement (LOAS) between facilities were obtained.
These documents were needed in order to determine the arrival flowsinto N90 (The PHL
flows were determined in previous studies). The arrival flowsinto PHL and N90 are
described in demand modeling (Section 3.2) and Appendix A of this report along with a
suggestion for the meter fixesto be used by MCTMA for the N9O flows.

The visits were successful in gaining insight into the main flow constraints and
the current flow management procedures at each facility. A list of questions and
parameters that needed to be identified to support the modeling efforts was prepared
beforehand. In some cases it was possible to obtain the experts’ estimation of certain
numerical parameters such as delay thresholds and rule of thumb procedures for MilesIn
Trail propagation. However, as expected due to the limited time and resources, the set of
modeling parameters and procedures identified was incompl ete and was pursued through
further elicitations. Contacts were made at each facility in order to ask further questions
that were identified at alater time as the modeling and analysis efforts continued. Follow-
on guestions were sent through NASA’s McTMA researchers during their additional
visits to the sites. It was possible to get more information from ZNY, but unfortunately,
not from ZBW, ZDC, and N90.

While some information were needed for modeling MCTMA function parameters,
the magjority of the information requested was needed for modeling a baseline that
represents the current operations. This baseline was used as a current year baseline as
well as a baseline for future year benefits assessment. The current operations model was
designed to mimic the current behavior of the traffic managers and controllers. Due to the
incompl eteness of the elicited information the model of current operations was instead
based mainly on observations of actual data from November 2003 (track data and facility
logs). Data analysis were performed to attempt to identify the way the traffic managers
set the system capacities and Miles In Trail restrictions and the factors that they are based
on, the way they propagate the Miles In Trail restrictions through the system, and the way
they implement (and possibly deviate from) the specified MilesIn Trail. These elicited
and modeled baseline flow management procedures and behavior are described in
Section 4.

® PHL was not visited due to ongoing equipment upgrade activities at the facility and the prior knowledge
about the PHL operations from previous studies.



2.3. Economic Performance, Sensitivity Analysis, and
Extrapolation

As shown in Figure 1, the technical performance of the system is converted into
economic terms, and the economic benefits of MCTMA measured. The analysisis then
tested through sensitivity analysis to identify the sensitivity of the benefit estimates to
certain model and benefit mechanism parameters. The analysisis also extrapolated for
extension to other years and to other MCTMA sites, so that the economic benefits of
MCcTMA can be identified across the NAS, for an extended period of time.

For the assessment of the MCTMA benefitsin later years, a simulated baseline
that represents the N90 and PHL operations without using MCTMA in later years was
compared with simulated operations with using MCTMA in later years. The smulated
later years operations accounted for differences from current operations, as possible.
These differences were assessed based on FAA studies and documentations. They
included increase in demand according to the FAA forecasts and changes in the airspace
structure (namely, accounting for the consolidation between N90 and PHL). The addition
of runways was also investigated. The extrapolation is described in Section 10.
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3. Identification and Modeling of Capacity and
Demand

The capacity constraints and demand flows for PHL and N9O are presented in
Sections 3.1 and 3.2, respectively, along with the corresponding models.

3.1. Capacity Constraints

Aircraft transition from en-route sector airspace to terminal area airspace
(TRACON), and then land on specific runways at the destination airport. The capacity
constraints of these three major resources (runway, TRACON airspace, and sector
airspace) are described below in Sections 3.1.1 t0 3.1.3.

3.1.1. Runway Capacity Constraints

The primary flow constraint is usually the airport acceptance rate, which depends
mainly on the runway configuration, visibility, and runway conditions. The acceptance
rate of an airport is usually reported by the airport control tower and changes depending
on changes of runway configuration and airport conditions. These reported acceptance
rates however, are inaccurate as they represent a crude and conservative estimate, and the
actual operations on any particular day may deviate largely from them.

In order to determine the arrival service rate (known as the Arrival Acceptance
Rate, AAR) of arunway (or runway system), the throughput of the runway systemis
plotted as afunction of the demand, as shown in Figure 5. Because the arrival service rate
isafunction of runway configuration, visibility, and runway conditions, and because the
reported acceptance rate is generally adjusted according to each of these constraints,
throughput is plotted against demand for each of the commonly reported acceptance rates
at each airport.
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Figure 5. Average throughput versus demand for Newark airport with areported AAR of
44 aircraft per hour; June, July and August, 2001.
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As shown and described in detail in Appendix B, such charts were generated
using throughput and demand data for each quarter hour period from June to August of
2000, and January to August of 2001. This dataisfrom the FAA’s Aviation System
Performance Metrics (ASPM) database. Throughput represents the number of aircraft
that landed at the airport per quarter hour, multiplied by 4 to be specified as an arrival
rate per hour. Demand, as recorded in the ASPM dataset, is the number of aircraft that
intend to land at a specific airport in aunit of time. An aircraft isincluded in the demand
in the periods starting from its actual wheels off time plus an estimated time enroute, and
ending at the actual wheels on time. The demand per quarter hour presented aboveis also
multiplied by 4 to be specified as arate per hour. In the throughput vs. demand figure the
moving average of the throughput is plotted against corresponding demand, with error
bars representing one standard deviation in each direction. The window size for the
calculation of the moving average is 10 aircraft per hour. The right plot in Figure 5 shows
the frequency of the demand in 4 aircraft per hour bins.

It is clear that the throughput increases linearly with demand, until a maximum is
approached, at which point throughput does not match demand, but drops off as demand
increases. As the number of aircraft waiting increases the throughput of the runway
system increases, because more pressure is applied to it. However, thereis apoint at
which the throughput reaches a maximum or saturation value. Beyond this point
additional demand pressure (namely congestion or delay in the airspace) is no longer
beneficial in terms of increasing throughput. This saturation level is set mainly by the
safety separation requirements between aircraft and by controller workload. Therefore,
the throughput saturation level is used as an estimate of the maximum service rate
capacity of the runway system. As the demand pressure increases further, the throughput
islikely to be reduced below the maximum or saturation capacity level, indicating
inefficiency. This drop may be due to, among other factors, controller workload
constraints, and airspace complexity constraints. When controllers are working too many
aircraft they are not able to be as efficient as with fewer aircraft, and the service rate of
the resource can thus be reduced. Also complex interactions between flows in the
airspace may lead to gridlock as the number of aircraft increases. As the system
approaches gridlock the throughput of the affected resource is reduced.

In order to estimate the actual arrival rate capacity of the airport, a hyperbolic
curve isfitted to the average throughput with demand less than the drop off point (the
dashed line in Figure 5). The second plot in Figure 5 showing the frequency of the
demand in 4 aircraft per hour bins shows that the majority of data pointsfall to the left of
this drop-off in throughput. The hyperbolic curve fit asymptotes to throughput equaling
demand on the left (45° line) and to a maximum throughput on the right. This maximum
throughput represents the actual capacity operated at the airport, for the reported AAR
under question. As an example, for areported AAR of 44 aircraft per hour at Newark,
this actual (or asymptotic) arrival capacity is 49 aircraft per hour. Results for other
reported AARSs and other airports are presented in Table 1 below. Because the hyperbolic
curveisfitted to the average arrival throughput, this actual capacity represents an arrival
capacity average over arange of other varying factors including, for example, departure
rate.
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An estimate of the maximum airport arrival capacity achievable can beidentified
from the raw data as the maximum throughput achieved in any half hour period. Because
of binning errors (errors resulting from the use of time bins to estimate a maximum
capacity) the FAA recommend that capacity be identified using half hour periods, and not
guarter hour periods. Because the maximum islikely to be arare occurrence, and may
represent human error in violating separation requirements, the 99™ percentile of the
throughﬁut per half hour isthought to be a better estimate of this maximum capacity than
the 100" percentile. For areported AAR of 44 aircraft per hour at Newark, thisis 82
aircraft per hour — nearly twice the reported rate. Results for other reported AARs and
other airports are presented in Table 1 below.

The capacities corresponding to the AARs reported at PHL, EWR, LGA, JFK,
and TEB on the days analyzed in this study are presented in Table 1 below. Three levels
are shown: the reported capacity; the asymptotic capacity; and the 99" percentile
capacity, which represents the AAR describing the maximum capacity achievable. The
charts supporting the datain Table 1, and further details of the capacity analysis
performed, are presented in Appendix B.

Table 1. Airport Capacities

Airport Reported Capacity Asymptotic Capacity 99" Percentile Capacity
(Reported AAR) (Actual Configuration (Max Achievable AAR)
[ac/hr] Capacity AAR) [ac/hr]
[ac/hr]

PHL 36 41 60

52 61 72

LGA 31 41 52

34 41 52

39 41 52

42 45 56

EWR 34 40 56

38 44 56

40 44 56

44 49 56

JFK 33 44 44

35 43 48

51 60 60

TEB 32 43 28

It should be noted that the 99" percentile capacity is lower than the actual
asymptotic capacity for TEB, and very closeto it at JFK. Thisis due to the limited
throughput saturation at these two airports under high demand levels, as shown in Figure
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6 below for JFK, and explained in detail the next section. The demand at these two
airports did not reach levels higher than capacity often enough to cause throughput
saturation.
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Figure 6. Limited saturation at JFK airport — reported AAR of 51 ac/hr.

The arrival service rate of arunway system is also dependent on the departure
service rate when the arrivals and departures share the same or interacting runways. This
is demonstrated in Figure 7 where the arrival and departure rates for each period of time
are plotted for PHL, when it reported an AAR of 52 aircraft per hour. Asthe rates
increase a tradeoff is evident where serving more arrivals is accomplished at the expense
of serving less departures and vice versa, resulting in a capacity envelope.
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Figure 7. Capacity envelope for PHL with areported AAR of 52 ac/hr; June, July and
August 2001.
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This capacity envelope becomes an important parameter, as any increase in the
system throughput should be realized through an increase in the capacity or utilization of
the runways. An outward shift of the envelope represents an increase in available
capacity. In some cases an airport may be operating consistently below the envelope and
an increase in utilization of available capacity represents moving the operating point
closer to the envelope. It is also important for modeling the tradeoff between arrival and
departure maximum rates. For example, if the departure rate for a given period is known
and fixed, the maximum arrival rate may be read off the envelope and applied to the
simulation.

The effect of departures was thus modeled by calculating a number of airport
capacitiesin the same way asin Figure 5, for each reported AAR, for arange of actual
departure throughputs. Actual departure throughput was then plotted against the
calculated arrival capacity for that departure throughput, yielding a capacity envelope for
that reported AAR. Capacity envelopes were thus devel oped for the asymptotic capacity
and arange of percentile capacities from the 85" percentile to the 99" percentile at EWR
and LGA, and from the 90™ percentile to the 99™ percentile at PHL, JFK and TEB. All
percentiles of the capacity envelopes were calculated per quarter hour. The 99" percentile
capacity envelope was also calculated per half hour, and it is this envelope that represents
the maximum achievable capacity at the airport.

Because of the discrete increments between percentiles in the capacity envelopes
calculated, anumber of the envelopes for different percentiles were found to overlap, and
thus not model any change in capacity with the change in percentile. This produced
inaccurate estimates of capacity at the different percentiles. The percentiles were thus
estimated by fitting a gamma distribution to the throughput data, and calculating the
percentile from the fitted gamma distribution instead of the original throughput data.
Confidence intervals of 90% were aso calculated for the parameters of the gamma
distribution, and if the parameters calculated did not fall within these intervals the fitted
distribution was assumed to be too poor, and discarded. In these cases the percentiles
were calculated from the original throughput data instead.

As described above capacity envelopes were generated for each reported AAR at
each airport. This assumes that for each reported AAR there is only one reported airport
departure rate (ADR). If ADR varied with constant AAR adifferent capacity envelope
could be developed for each AAR/ADR combination. Such cases were very limited over
the 15 days from November 2003 analyzed in this study. In ailmost all cases there was
only one ADR for any given AAR. However, there were afew cases at PHL and JFK
where ADR varied with AAR. These cases were thus dealt with independently, and
capacity envelopes were developed for each AAR/ADR combination in each case.

The capacity envelopes are shown in Figure 8 to Figure 12 below for asingle
commonly reported AAR at each airport. Estimating departure rate for a given period as
the actual departure throughput for that period (from the ASPM database per quarter
hour), the asymptotic arrival rates and arrival rates at each percentile were thus read off
the appropriate envel opes and applied to the ssimulation.
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It is clear from the capacity envelopes presented that the 99™ percentile envelope
calculated per half hour is significantly different to that calculated per quarter hour,
particularly at the higher departure rates. This suggests that the binning error is
significant, at least under certain circumstances. Many of the other percentile envelopes,
calculated per quarter hour, are higher than the 99" percentile envelope cal culated per
half hour at the higher departure rates. This does not mean that these envelopes cannot be
applied, however, because the 99™ percentile envel ope calculated per half hour is only an
estimate of airport capacity. Aslong as the modeled airport throughput under the applied
percentile calculated per quarter hour does not violate this limit more than occurs under
actual operations, the maximum airport capacity is not violated. The method by which the
airport capacity to be applied to MCTMA isidentified is described in detail in Section
7.2.

The asymptotic capacity envelope iswell below than the 99" percentile envelope
in all cases except JFK, where it is higher, and TEB, whereitisonly just lower. Thisis
consistent with the analysis presented in Table 1, suggesting that these airports do not
saturate to the extent of the other airports.
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3.1.2. TRACON Capacity Constraints

According to previous NASA study on Philadel phia[7] the bottleneck in the flow
to PHL are the runways at Philadelphia airport. The primary constraint is therefore the
airport acceptance rate. According to interviews with TMCs at N9O, the airspace within
N90 is the primary constraint to arrival flowsinto N90, and not the arrival rates at the
airports. Thisis due primarily to the large number of airports (3 magjor and 12 satellite
airports) that share arelatively small airspace. The interaction of flows, the number of
aircraft within the TRACON, and the size of the TRACON, all limit flow into each
airport.

JFK for example does not generally run at capacity, particularly when the
reported AAR is high (such as 51 aircraft per hour). According to interviews with N9O
TMCs during the site visit, JFK operates three arrival runways during the international
arrival push from 1pm to 5pm. Thisis because international flights take priority over
domestic flights, asthey are generally fuel critical. However, during other hours JFK is
not able to operate three arrival runways, and consequently operates at a significantly
lower throughput. Thisis because of the flows into the other three primary airportsin
N90. These observations from the N90 TMCS are confirmed in Figure 6, which shows
limited saturation of JFK throughput as demand increases and when the reported AAR is
high, unlike the other airports. TEB displays an almost complete lack of throughput
saturation.

Another indication of the N90O airspace constraints is the ongoing efforts to
improve the airspace patterns and reduce the interaction between the flows. An example
of such an improvement is the flipping of the arrival fixesinto LaGuardia and Newark
airports, from ZDC, which was implemented in the summer of 2002. The locations of
these fixes used to require LaGuardia and Newark arrival streamsto cross. After the fixes
were flipped the flows no longer cross. According to TMCs at ZDC and N90 this has
improved operations significantly and allowed holding 2 aircraft in the TRACON, while
no holding was exercised before.

In order to compare the individual airport versus TRACON capacity limitations,
Figure 13 and Figure 14 plot the actua arrival rate versus the reported arrival rate for
each of the three major N90 airports separately and for all airports combined
(representing the TRACON as a single resource). While each airport exhibited a certain
degree of underutilization of the runway arrival capacity (measured relative to the
reported capacity), the underutilization was more pronounced for the combined airports.
Thisindicated that when some of the airports operate at capacity the other airports
usually operate below their capacity. This observation supports the N9O personnel
comments made during the site visit that the N9O airspace is a more binding constraint
than the N9O airports runway capacity.
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Figure 14. Utilization of N90 TRACON.

One implication of the observation that the N90 airspace is the bottleneck for the
N9O0 arrival flows is that an increase in the N9O acceptance rate (due to McTMA for
example) may easily be taken advantage of by utilizing existing runway capacity. It was
indicated by a TMC during the site visit, for example, that JFK airport has runway
capacity that is unused due to TRACON airspace limitations (sharing the TRACON with
other airports). This is unlike other locations where the limiting factor is the available
runways and adding more runways is needed in order to increase capacity.

Figure 13 shows a certain level of inefficiency and underutilization of capacity in
the current operations. The benefits of MCTMA in increasing the system throughput may
be realized through an increase in the utilization of the available capacity or in the
available capacity as will be described in Section 5. One implication of the TRACON
being the capacity limiting resource is to use the combined airport throughput versus
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demand curve to estimate the system capacity instead of using the individua airport
capacity models. This analysis was completed for a number of runway configuration
combinations at the primary airports within N90 (EWR, LGA, JFK, and TEB). The
throughput versus demand curves are of the same shape as those generated for the
individual airports, as shown in Figure 15. A hyperbolic curve was thus fitted to the data
to the left of the drop-off in throughput, as for the individual airports, and the horizontal
asymptote identified as the actual arrival capacity of the TRACON.

The TRACON capacity limit was not imposed in the modeling either MCTMA or
baseline operations. This was due to the immaturity of the N90 capacity anaysis,
particularly with inclusion of the departure rates and modeling of the capacity envelopes
for each airport. MCTMA also applies airport acceptance rates and not a TRACON
acceptance rate. It is unclear how a TRACON constraint will be applied in MCTMA
operations.
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Figure 15. TRACON throughput plotted against demand — @) moving average plot with
hyperbolic curve fit, and b) demand frequency plot. Data source: ASPM database for
January to August of 2001, and June to August of 2000.

Under current operations the TRACON airspace limitation often induces the N9O
TMCsto impose MIT restrictions due to airspace congestion as opposed to runway
capacity limitation. The main tool that is used to set the acceptance rate of N90 is Miles
In Trail, which are passed back to the adjoining ARTCCs.

MIT restrictions at the PHL TRACON boundary are primarily specified according
to airport acceptance rate. However, according to expert elicitation from N90 TMCs,
MIT restrictions at the N90 TRACON boundary are specified according to required
airport acceptance rates, limits on the number of aircraft in the N90 airspace, demand on
the TRACON, and local delays.

The modeling of current operations, and the specification of MIT according to
airport capacitiesis presented in detail in Section 4.
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3.1.3. Sector Capacity Constraints

While the capacity of sectors to absorb delays and hold aircraft is usually not the

constraining element in the flow, it is an important parameter for the propagation of
delays upstream. When restrictions are imposed because of arunway or TRACON
limited acceptance rate, the delays are propagated back to the upstream sectors. Each
sector has a limited ability to absorb delay and hold aircraft and once this limit is reached
the delays are propagated further upstream. It is therefore, essential to identify the sector
capacitiesin order to model the current baseline operations and the MCTMA metering
process, both of which depend on this parameter.

According to expert elicitation from TMCs during the site visits, a number of

factors affect the capacity of sectors under normal weather conditions:

1.

2.

Compression dueto descent — As arrivals descend, they are generally required to
slow down. If a sector descends aircraft, more spacing is required at the entry point in
the sector to provide the 5 MIT spacing (or more if the flow isrestricted) required at
the exit point in the sector, because of the speed reduction of the leading aircraft as it
descends. These sectors thus have reduced capacity as they are not able to absorb as
much delay. This particularly affects sectors close to the TRACON.

Vectoring — The proximity of other airways can limit the amount of vectoring aircraft
are able to perform because the aircraft are limited in how much they deviate from
their airways without violating safety separation requirements with other traffic. This
isparticularly aproblemin ZNY as there are number of close parallel airways
between N90 and ZOB. Asaresult ZNY exercises very limited vectoring. Thereis
more space for such vectoring in ZBW, ZOB and ZDC.

Speed Reduction — Only asmall amount of delay is able to be absorbed through
speed reduction depending on the size of the sector, as speed can generally only be
reduced by afew knots. The amount of speed reduction possible can be greatly
affected by wind. If the prevailing wind is atail wind, the effect of speed reductionis
limited as aircraft fly faster with respect to ground, while any kind of headwind can
be used very effectively to open gapsin the flow using speed reduction. The
prevailing wind is generally from the west, so speed reduction for N90 and PHL
flowsin ZNY and ZOB has limited effect. Speed reduction for N90 and PHL flowsin
ZBW, however, can be very effective. Speed reduction for N90 and PHL flowsin
ZDC is affected by wind to alesser degree as the prevailing wind is a crosswind, and
often not atailwind or headwind.

Holding — In extreme cases when aircraft must be delayed by an amount that istoo
great to be absorbed by vectoring or speed control, the aircraft must be put into a
holding pattern. Holding patterns are limited in location and capacity by other
airways, alongside and overhead. The minimum and maximum altitudes of an airway
define the number of aircraft that can be held in a holding pattern on the airway, as
the vertical separation between aircraft must be 1000ft. Because the sectorsin ZNY
are highly constrained by the number and proximity of the parallel airways between
N90 and ZOB, ZNY does not hold aircraft. ZOB however, is ableto hold aircraft
bound for N90 on the boundary of ZNY . There is also substantial holding capacity in
both ZBW and ZDC.
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5. Gridlock — The possibility of gridlock limits the ability of a sector to absorb delay.
One interesting observation at ZOB is that the holding patterns of the N9O arrivals
heading to ZNY can block the N90 departure routes from ZNY into ZOB. Thislimits
ZOB’s ability to hold ZNY arrivals and forces ZOB to holds the N90 departures from
ZNY when ZNY holds the N9O arrivals from ZOB. Because the arrival and
departures are interdependent, where departures need to leave the airportsin order to
make room for the arrivalsto land, a gridlock effect is created where both arrivals and
departures are holding and waiting each for the other to advance.

6. Complexity of flow patter ns— The degree of interaction between the flowsin a
sector can affect the capacity of the sector. If flows descend, climb, or cross, the
capacity can be greatly reduced due to the high workload associated with controlling
the complex patterns. According to expert elicitation from ZOB TMCs, thisis
particularly true for examplein Lorain sector in ZOB, in which no delay can be
absorbed. OALTs (Operational Acceptable Level of Traffic) are correspondingly
particularly low for such sectors.

The capacity can thus be specified for each sector by a number of variables. These
are the amount of delay that can be absorbed in the sector without holding (or sector
delayability), the number of aircraft that can be held in the sector, and the OALT for the
sector. Sector delayability was determined for some sectors through expert elicitation
during the site visits, particularly in ZOB as shown in Figure 16. As shown the maximum
delay that can be absorbed without holding is 3 minutes, and as was a so indicated during
the site visits, delays of about 4 minutes and above are usually absorbed through holding.
However, MCTMA researchers aso indicated that other facilities such as DFW use 6
minutes as arule of thumb for the duration of a single holding spin. The difference may
be caused by the restricted size of holding patterns in the Northeast. Since no explicit
analysis was conducted to determine the minimum holding delay a value of 5 minute
delay was used in this study to indicate that an aircraft was most likely held. ZNY
indicated that they have very little ability to absorb delay through vectoring or speed
reduction (dueto tail winds), and they have very little holding capacity.

The delay parameters that were identified through interviews on the site visits
were confirmed through analysis of Host traffic data as described below.

The delayability between each meter fix pair in the system was al so estimated by
calculating actual historic transitions times between meter fixes, and comparing these to
unimpeded times between the same fixes. The derivation of unimpeded transition timesis
described in Demand Modeling in Section 3.2. The difference between the actual
transition times and the unimpeded transition time represents the amount of delay that
was absorbed. Held aircraft were excluded from the analysis by excluding all flights with
transition times more than five minutes longer than the unimpeded transition time. Five
minutes was chosen, as an aircraft generally requires four minutes to make one spinin a
holding pattern. The maximum amount of delay able to be absorbed between the meter
fixes, or the delayability, was identified as the 90" percentile of the historical flight
delays between the fixes. The upper 10% of delays were assumed to be abnormalities.
The sensitivity of the final benefits to delayability isanalyzed in Section 9.2.
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The delayabilities calculated for the meter fix pairsin ZOB are presented in
Figure 16, alongside those identified from expert elicitation. Because some of the meter
fix pairsinclude more than one sector, some of the delayabilities identified from expert
elicitation for each sector must be added for comparison to the delayability calculated
from historical transition times. It is clear from this comparison that the delayabilities
calculated from historical transition times match closely to those identified through
expert elicitation, for the downstream sectors. However, for the upstream sectors the
delayabilities identified through expert elicitation are significantly higher than those
calculated from historical transition times. This is because the upstream sectors are not
often required to absorb as much delay as they are able to. The analysis of the historical
transition times reflects this. The downstream meter fix pair delayabilities are thus
estimated according to the analysis of the historical transition times, but the upstream
meter fix pair delayabilities are increased according to the delayabilities identified
through expert elicitation. Because delayabilities could only be identified through expert
elicitation for ZOB, these numbers were extrapolated to all upstream sectorsin the
system.

¢ ZOB Spec. = 3 min “
e ZOB Spec. = 3 min
* EWR Flow = 1.9 min
¢ JFK Flow = 1.6 min
« TEB Flow = 1.8 min

* RWR Flow = 1.7 min
ANLlow = 1.1 min
o JFK Flow =

e ZOB Spec.
=3 min

e EWR Flbw = 1.3 min
* LGA Floy = 1.5 min

¢ ZOB Spec. = N/A
¢ LGA Flow = 1.5 min

* ZOB Spec. = 0 min
e PHL Flow = 1.4 min

* ZOB Spec. = 3 min
e PHL Flow = 1.7 min
e ZOB Spec. =0m
e PHL Flow = 1.0 min
¢ LGA Flow = 0.9 min
FK Flow = 0.5 min

Figure 16. Delayabilities, ZOB.

While the delay that is able to be absorbed in the airspace between meter fixes
may be large, the throughput at the downstream resources (runways and TRACON) may
saturate at a lower level of delay. This lower level of delay corresponds to the level of
demand at which the throughput saturates in Figure 5. It would therefore not be beneficial
in terms of throughput to delay aircraft beyond this level (even if the sectors capacity
allows for more delay). This delay level at which throughput saturates has not been
modeled in this study, as the delayabilities specified in MCTMA are not currently to
include this effect. Inclusion of the effect may however increase the benefits of MCTMA,
if applied in the future, and may thus be studied further in the future work.
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3.2. Traffic Demand

The demand on the system is driven by the airlines scheduling of flightsinto the
airports served by the TRACON. The demand at afix is represented by a series of
Estimated Times of Arrival (ETA) calculated based on the airline schedules and flight
plans. If unimpeded, aircraft fly from fix to fix at speed. Using unimpeded transition
times between fixes, estimated times of arrival (ETAS) can be calculated at each fix, and
at the airport as shown in Figure 17.

Fix 0 Fix 1 Fix 2

A > A > A
Aircraft * (unimpeded)
).). tly e > ETAL=thy+ TTYy - > ETAL=ETAL +TT.,
t; — Aircraft x actual time of arrival at fix i

ETA%, — Aircraft x estimated time of arrival at fix i
T - Unimpeded transition time for aircraft x from fix i toj

Figure 17. Demand based on estimated times of arrival

ETAsat fixes are calculated according to aflight’sinitial conditions, including
time of entry into the system (tp). This entry time into the system corresponds to the
actual time that the aircraft crosses the outmost perimeter of the system. Other inputs
include unimpeded transition times to the downstream fix in the flight plan (TTs), and
unimpeded transition times between subsequent fixes. Equations (3) describing the
subsequent calculation of ETAs are as follows:

ETA, =1,+TT,,
ETA, = ETA, +TT,,...

or
ETA, = ETA, +TT,

3

In this manner each flight's ETAs are calculated for all the applicable points,
working downstream from the system boundary to the runway threshold.

Figure 18 describes an arrival flow network for JFK. The network includes 3 tiers,
each presented in different colors. The flows were identified according to STARS, flows
illustrated in presentations by Cleveland ARTCC Traffic Management Unit and Boston
ARTCC, and according to host track datafrom September 12, September 17, and
September 19, 2002. The arrows in the figure represent the flows modeled. The flows are
presented for all other airports under consideration in Appendix A, along with further
details on how they were generated.
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Figure 18. Arrival flow network and multiple tiers for JFK

Meter fixes on the flows in Figure 18 were chosen according to an approach
suggested by NASA McTMA researchers. This approach includes specification of meter
fixes and meter fix freeze horizons as close to sector boundaries as possible, but also at
flow merge points. Meter fix arcs were also specified in some cases, instead of meter fix
points, to ensure that as much traffic as possible is metered.

Theflight locations at the start of the simulation were extracted from actual host
track data. In the case of internal departures for airports that had a significant amount of
traffic the entry time into the system was taken as the recorded first track point after
departure. Internal departures from smaller airports, which did not contribute
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significantly to the traffic, were captured as they crossed the next tier or the TRACON.
An airport was considered to have a significant amount of traffic if traffic from this
airport constituted more than approximately 1% of arrival traffic into the destination
airport under consideration. This generally includes any airport with more than 5 flights a
day to the destination airport under consideration.

Demand is based on actual entry times into the system, as opposed to scheduled
entry time, for both airborne and internal departure aircraft. The resulting demand is
conservative because MCTMA is expected to increase demand into the system by
reducing the need and severity of restrictions imposed upstream of the system. For
example, because of MCTMA, internal departures may be delayed less on the ground than
in current operations, and airborne aircraft may be delayed less upstream, due to GDPs
and upstream MIT, than in current operations.

Unimpeded transition times were estimated according to a statistical analysis of actual
historic transition times for flights passing through each meter fix pair. The actual
transition times for all flights passing through each meter fix pair from fifteen daysin
November 2003 (Nov. 8, 9, 11, 12, 14, 19, 20, 22, 23, 24, 25, 26, 27, 28, and 29) were
plotted against the queue size encountered, for 2 different weight classes, for 5 different
wind conditions, and by runway configuration (transition times within the TRACON
only). Actual transition times and queue sizes were calculated from host track data for
these days. The queue size experienced by aflight between each pair of fixes was
calculated as the number of aircraft that passed through the downstream fix from the time
when the flight under question crossed the upstream fix, to when it crossed the
downstream fix. The weight classes plotted were Small and Other (including Large,
B757, and Heavy). Transition times were not separated for Large, B757 and Heavy
weight classes because the resulting unimpeded transition times were not found to vary
significantly over these weight classes. The wind conditions were separated by plotting
hourly RUC wind speed and wind angle at 30,000ft at the center of ZNY for the 15 days
studied, and identifying dominant clusters, as shown in Figure 19. The wind clusters
identified were for a northerly wind (wind angle greater than 90°), a strong westerly wind
(wind angle between 45° and 90°, and a wind speed greater than 150kts), a weak westerly
wind (wind angle between 45° and 90°, and a wind speed less than 150kts), a strong
southerly wind (wind angle less than 45°, and a wind speed greater than 150kts), and a
weak southerly wind (wind angle less than 45°, and awind speed less than 150kts). The
northerly wind cluster was not separated into weak and strong clusters because of the
lower number of data pointsin this cluster. The resulting unimpeded transition times
were found to vary significantly (in the order of afew minutesin some cases) by wind
conditions. The RUC data was obtained from NASA.
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Figure 19. RUC wind speed (Wm) and wind angle (Wa), with dominant clusters
separated.

Figure 20 below shows the queuing dynamics for the flow from the boundary of
ZNY and ZOB to PENNS —the west arrival fix into EWR, for Large aircraft, and a weak
westerly wind. Similarly Figure 21 shows the queuing dynamics for the flow from
PENNSto EWR, landing on runway 22L or 22R, for Large aircraft, and a weak westerly
wind. Such data was generated for each meter fix pair in the system.
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Figure 20. a) Queuing model for Large weight class, under aweak westerly wind (wind
angle between 45° and 90°, and a wind speed |ess than 150kts) from the boundary
between ZNY and ZOB to PENNS. b) Corresponding frequency distribution with queue
size.
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Figure 21. a) Queuing model for Large weight class, under aweak westerly wind (wind
angle between 45° and 90°, and a wind speed less than 150kts) from PENNS to Newark
airport, landing on runway 22L or 22R. b) Corresponding frequency distribution with
gueue size.

It can be seen that transition times increase with increasing queue size in both
Figure 20 and Figure 21. The increase in transition time in Figure 20 is slow, and
approximately linear, while that in Figure 21 isfaster and of a higher order than one. The
figures thus suggest that there is more of a queuing effect in the TRACON (Figure 21)
than outside the TRACON (Figure 20). Similar plots for meter fix pairs further upstream
also show less of aqueuing effect than in Figure 21. The TRACON is expected to exhibit
more queuing than upstream because it is more constrained and more aircraft are required
to queue in asmaller region of airspace. Thisis because many streams from upstream
joininthe TRACON to form the final approach queue to the runway. Upstream, there are
fewer aircraft and more airspace.

Unimpeded transition times upstream of the TRACON were estimated by fitting a
normal distribution to the data points with low queue size, and sampling from this
distribution. This introduces variability to the estimated unimpeded transition times,
which models the different unimpeded transition times that result for different flights
plans and aircraft types flying through the meter fixes modeled. The low queue size
threshold was identified as the lowest queue size for which there were at least 10 data
point. This ensures that enough data points are identified for fitting a distribution. This
includes all data with blue x’sin Figure 20 above. In this case there were enough data
points with a queue size of zero from which to generate the distribution. Held aircraft
were excluded from the analysis by excluding all flights with transition times more than
five minutes longer than the average transition time. Five minutes was chosen as to
represent held aircraft asin the calculation of delayabilitiesin Section 3.1.3.

Because of the high traffic within the TRACON, other than exhibiting more
gueuing, there are also generally fewer cases of low queue size than upstream. This
means that an estimate of the unimpeded transition time using the 10 data points with
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lowest queue size may include data points with queue sizes as high as 4 aircraft, which
may have transition times significantly higher than those with a queue size of zero
aircraft. Such an estimate of unimpeded transition time may thus be unrealistically high.
For this reason unimpeded transition times within the TRACON were estimated by fitting
acurve to the data, and estimating the average unimpeded transition time as the zero
gueue intercept of this curve fit. A normal distribution was fitted around this average with
a standard deviation equal to that of the data points with low queue size. Two curves

were fitted to the datain each case —a 2™ order parabolic curve fit, and an exponential
curve fit. The quality of the fit was compared by calculating the sum of the square of the
residual for each curvefit. The curve fit with the lower value for this parameter was
chosen to model the queving effect. In the case presented in Figure 21 the 2™ order
parabolic curve fit fitted the data more accurately than the exponential curve fit, and was
thus chosen to model the queuing effect. In other cases, such as that presented for the
flow from BUNTS to PHL airport, landing on 27L or 27R, shown in Figure 22, the
exponential fit was found to model the effect more accurately.
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Figure 22. a) Queuing model for Large weight class, under a weak westerly wind (wind
angle between 45° and 90°, and a wind speed |ess than 150kts) from BUNTS to
Philadel phia airport, landing on runway 27L or 27R. b) Corresponding frequency
distribution with queue size.

ETAswere calculated according to the unimpeded transition times sampled from
the distributions generated, and according to aircraft weight class and wind conditions,
for al the applicable points for each flight, working downstream from the system
boundary (the freeze horizon of the third tier) to the runway threshold. This estimated
time of arrival based on unimpeded travel between fixes represents the baseline relative
to which en-route delay is accumul ated.
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3.2.1. Comparison of Statistical Model to Trajectory based Model

The results of the statistical model developed to estimate unimpeded transition
times was compared to the results of atrgjectory based model, the CTAS Trgjectory
Synthesizer (TS). Giveninitia conditions, flight plans, RUC wind files, and aircraft and
enginetype datathe TS calculates aflight’s ETA by modeling itstrajectory explicitly. A
number of flights from November 20, 22, and 26, 2003, were analyzed using the TS, and
their ETAs at the TRACON boundary compared to those cal culated using the statistical
models described above. Flight ETAs were not calculated at the runway because the
adaptation for the TS did not include TRACON internal routes. The differences between
the ETAs are presented in the histogramsin Figure 23, for each airport.

In each of the histograms presented in Figure 23 thereis apeak at zero. This
suggests that for anumber of flights thereislittle difference between the ETAs calculated
at the TRACON using the TS, and using the statistical models presented above. In each
case, however, thereis atail on the positive side. Thistail is particularly large at LGA
and JFK. Positive differences indicate that the TS modeled ETA for these flightsis later
than that modeled using the statistical model presented above. The average and median of
the differencein ETA is presented in Table 2 below.

Table 2. Mean and Median of Differences between TS and Statistically modeled
TRACON ETA.

Number if Mean Diff. between TS | Median of Diff. between TS
Airport Data Points | and Stat. TRACON ETA and Stat. TRACON ETA

[Flights] [min] [min]

PHL 782 0.806 0.310

LGA 595 2.385 0.264

EWR 562 1.698 0.259

JFK 282 2.472 1.593

TEB 279 1.423 0.000

Itisclear from Table 2 that the tail on the positive side of the histogramsin
Figure 23 has an effect on the mean differences between the TS and statistically modeled
ETAs, as each mean valueis greater than zero. For LGA and JFK the mean differenceis
particularly high, and isin the order of magnitude of delay incurred in the system. The
medians, however, are not as high, except at JFK, and show good correlation between the
TS and statistical model. A median is affected less by atail, and is thus expected to show
better correlation in this case because the tail appears to be the primary cause of the high
differences. It isimportant, however, to identify the causes of the tail, and the cause of
the high median of the differences at JFK.
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Figure 23. Histograms for presenting the differences between flight ETAS calculated
using the CTAS TS, and calculated using the statistical modeled presented above.
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According to the histogramsin Figure 23 there are some cases where the
difference between the TS and statistically modeled ETA is particularly high, such as
nearly 70 minutes for one flight at EWR. These cases are likely to be errorsin the flight
plans, or in the TS parsing of the flight plans. However, the lower values in the tail, such
asthose at JFK and LGA, are not so high asto clearly be the result of errors, and may
thus be caused by other effects. One such effect is short cuts from the scheduled flight
plan. Figure 24 shows a plot of TS output tracks and corresponding host tracks (the tracks
actually flown by the flights modeled by the TS) for the arrival flowsinto PHL. The
instances where the flight paths actually flown deviate from the flight plan can easily be
identified. Thisis particularly prevaent at the fix COFAX and HAR on the west arrival
flow, and at the fixes CANNY and HEDGE on the west of the two south arrival flows,
into PHL, as shown in Figure 24. The TS tracks show flights plans passing through
COFAX, HAR, HEDGE and CANNY . However, the host tracks show that many flights
did not in fact pass through these fixes, but took short cuts past them. It is possible that
the flight plans were amended to exclude these fixes, but because the flight plans inputted
into the TS were those at each flight’ s entry into the system, such flight plan amendments
were not captured by the TS. Theresult isthat ETAS calculated by the TS are later than
actually flown. The statistical models were, however, developed from actual data, and
thus account for any short cuts flown regularly. The statistically modeled ETAs are thus
likely to be earlier in these cases than those modeled by the TS, asisthe casein Table 2.

— Host tracks (actually flown)
— TS output tracks (flight

Latitude [deq]
41.5¢
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Figure 24. Host and TS output tracks arriving into PHL, showing short cuts flown relative
to flight plans

Figure 25 shows the host tracks for arrival flowsinto BUNTS, the west arrival fix
at PHL. Theflightsidentified as unimpeded in the statistical modeling for the unimpeded

33



transition time between the boundary of ZNY and ZOB and BUNTS, and thus used to
identify the unimpeded transition time, are highlighted. It is clear from these highlighted
flights that they cover arange of paths between the meter fixes, including short cuts.

— Host tracks
— Unimpeded tracks
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Figure 25. Host tracks for the west arrival flow into PHL from boundary of ZNY and
ZOB to BUNTS, highlighting the flights identified as unimpeded in the statistical

modeling of unimpeded transition times.



4. ldentification and Modeling of Current Flow
Management Procedures

When the traffic demand is expected to exceed the capacity of the system
(whether determined by runway or TRACON acceptance rates) the air traffic managers
apply a number of flow management procedures in order to avoid gridlock and excessive
delays. The main flow management procedures concerning the PHL and N90 flows were
identified through expert elicitation at the facilities visited. They are identified in order to
understand the causes of the baseline behavior and limitations as well as to support the
generation of amodel of the current operations baseline. This model is described in this
section and the parts that were implemented and simulated are indicated where
applicable. Certain parts of the current operations that were identified through the site
visits but were not modeled are described to provide insight and to support future
research.

4.1. Miles in Trail and its propagation

Arrival flows are fed into N90 from ZNY, ZDC and ZBW. Arrival flowsinto N9O
from ZDC and ZBW transition directly into N90, and do not pass through ZNY, with the
exception of JFK arrivals from ZDC, which pass through ZNY before transitioning to
N9O0. Arrivals from ZOB pass through ZNY before transitioning to N90. The PHL arrival
flows are fed into PHL from ZNY and ZDC. When there are acceptance capacity
constraints at the airports or in the TRACON restrictions are imposed on the inbound
flow through MilesIn Trail (MIT) at the arrival fixes. These MIT restrictions are
propagated upstream from center to center when the delay required by a center is beyond
its delay absorption capacity. Thisisillustrated schematically in Figure 26.

>

TRACON capacity

Figure 26. Propagation of Mile in Trail restrictions

ZNY isnot able to absorb much delay and suffers from compression due to the
speed and altitude reduction required on descent into N90. Consequently MIT restrictions
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from N90 are normally passed directly to ZOB, ZBW and ZDC increased by 5 miles to
account for compression. According to expert elicitation from TMCs at ZBW, ZOB and
ZDC, restrictions are generally only propagated from ZBW to ZOB, from ZOB to ZAU,
and from ZDC to ZTL, ZID and ZJX if the restrictions from N90 are greater than 15
MIT. Restrictions of 15 MIT or less are possible to accommodate by absorbing the delay
within the centers airspace.

According to the interviews with TMCs the constraints within the ARTCCs that
impact MIT propagation upstream are domestic upstream demand, internal departure
demand, international arrival demand, wind, and the delay absorption capabilities of each
sector. The restrictions propagated from ZBW to ZOB are primarily afunction of the
restrictions in place between N90 and ZBW, international demand from Europe, domestic
demand from ZOB, and internal departure demand from Boston Logan (BOS),
Manchester (MHT), and Providence (PVD) airports. The restrictions propagated from
ZOB to ZAU are primarily afunction of the restrictions in place between ZNY and ZOB,
internal departures from Cleveland, Detroit and Pittsburgh, and demand from ZAU. The
restrictions propagated from ZDC to ZTL, ZID and ZJX are primarily afunction of the
restriction in place between N90 and ZDC, internal departure demand from Washington
Dulles (IAD), Washington National (DCA), Baltimore (BWI1), and Philadelphia (PHL)
airports and demand from ZTL, ZID and ZJX.

Offloading flights is used in conjunction with these MIT restrictionsin certain
cases. When restrictions from ZNY to ZOB are 20 MIT or more, TMCs at ZOB may
offload some traffic through ZBW or ZDC, from which it can then enter N90. With
offloading less MIT restrictions are passed to the upstream centers. This approach is only
effectiveif the ZNY airspace is the constraint. When the N90 airspace is the constraint,
the aircraft are ssimply delayed on ZBW/N90 boundary as opposed to the ZOB/ZNY
boundary. Lack of coordination reduces the effectiveness of offloading.

When flows merge, restrictions are often passed back to more than one upstream
flow. Lower MIT are generally imposed on the heavier flow to avoid starving the
downstream resources, and because the inter spacing between aircraft from the lighter
flow islarger needing alarger MIT to produce an effect on the flow rate. The accuracy
with which this balancing is doneis limited however by the low resolution of MIT
restrictions (in increments of 5 MIT) and by the lack of knowledge of the downstream
cause (for example, asindicated in an interview, an aircraft heading to a non-restricted
runway does not need to be delayed, but not knowing the runway assignment does not
allow favoring such an aircraft).

According to interviewed TMCs, MIT restrictions greater than 30 or 40 are rarely
used. Thisis because such restrictions are difficult to apply effectively, and lead to
unpredictability in the flow, and can lead to instability in the system. Consequently,
holding, a Ground Stop, or a Ground Delay Program is implemented instead of such
severe MIT restrictions. Typically, holding is applied first for an immediate effect, and
then a Ground Stop is used as atemporary relief until along-term Ground Delay Program
isimplemented.

A model of MIT and its propagation is shown in Figure 27. Thismodel consists of
two main components: A restriction generation model and a delay flow model. The
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restriction generation model predicts the restrictions imposed by the facilities affecting
arrival flowsinto New Y ork and PHL by consideration of predicted AAR at the airports,
and predicted arrival demand both at each airport as awhole, and on each airport’s
individual arrival fixes. The model’ s outputs include MIT to be applied on arrival fixes
and MIT as propagated at facility boundaries. Other restrictions such as Ground Delay
Program (GDP) and Ground Stop (GS) are modeled in terms of their interaction with
MIT. The relationship between the inputs and the outputs is derived based on historical
data and represents current procedures.

The restrictions are an input to the delay flow model, which takes these
restrictions and converts them into separations to be applied between aircraft. These
separations are determined by a statistical model based on historical data and represent
current ATC behavior in meeting the assigned restrictions. Flight datais the arrival
demand input to the delay flow model. Flights fly between different fixes along a flow
network as described in Section 3.2. Each flight is assigned estimated times of arrival
(ETAS) at fixes and at the TRACON boundary, by assuming unimpeded flight between
meter fixes. The unimpeded flight time between each meter fix pair in the flow network
is sampled from transition times of flights derived from historical data, as described in
Section 3.2. The resulting ETAs are modified according to a statistical distribution of
separations required by the restrictions, resulting in actual times of arrival (ATAS) at the
TRACON boundary. These are converted to ATAs at the runway by the TRACON
model, which is discussed in Section 4.2.

AAR Arrival Demand  Other Factors
| | Delay Flight Data
Flow
Model l
Restriction Generation Statistical Computation of
Model of Actual -
Model Separations Estimated
Relationship between inputs P Times of Arrival
& restriction programs \ Using Statistical
. Unimpeded
Actual Sléparatlon Transition Time
Restrictions: | Restriction Spacing |<— ETAs at Fixes
— MIT at each arrival fix ———
— Propagation of MIT
ATAs at TRACON
Broundary

Figure 27. Current operations model diagram for MIT and its propagation

4.1.1. Restriction Generation Model

The restriction generation model determines MIT restrictions according to current
procedures. Its underlying relationships were determined through analysis of one month
of facility logs — the month of November 2003. Resulting restrictions meet reported
AARs at airports, given demand levels on arrival fixes, and total airport demand.
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Total duration of program [Minutes]

4.1.1.1. Omitting periodswith Ground Delay Program and Ground Stop

The occurrence of various restriction programs was identified from the logs and
grouped by AAR and demand, available for the month of November from ASPM data.
The purpose of this analysis was to identify how the various restriction programs were
used with respect to one another.

Figure 28 and Figure 29 show how the restriction programs identified were used,
asafunction of AAR and demand/AAR respectively at PHL. The demand used in Figure
29 is ASPM demand, which includes both flights having landed in the time period (15
minutes in duration) and flights scheduled to have landed, but which have not yet landed.
This measure of demand thus includes the effect of queuing. Restriction programs shown
include MIT, GDP and GS. In each figure, @) shows non-normalized datain total duration
of each program in minutes, to establish how large the sample set isfor each bin shown in
b), which shows the normalized data as percentages of duration. In both Figure 28 and
Figure 29 one can see that when the airport was unconstrained — AAR was high and
demand/AAR was low — ‘no restrictions' was the dominant field. Asthe airport became
more constrained — AAR decreased, and demand/AAR increased —first MIT was applied,
followed gradually by more severe programs such as GDP and GS until at low AAR and
high demand/AAR, MIT was not used on its own at all, but only in conjunction with
these more sever programs.
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Figure 28. Distribution of restriction programs versus AAR, at PHL, November 2003.
a) Shows non-normalized data in total duration of program through the month, in
minutes. b) Shows normalized data as percentages of duration.
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Figure 29. Distribution of restriction programs versus Demand/AAR, at PHL, November
2003. a) Shows non-normalized datain total duration of program through the month, in
minutes. b) Shows normalized data as percentages of duration.

In order to generate amodel for MIT generation, periods of time with GDP or GS
were omitted from the data since they would distort the causal relationship for applying
MIT. These periods were highly constrained, yet had either MIT in place in conjunction
with GDP/GS, or had no MIT at all. Furthermore, GDP and GS were not explicitly
analyzed in this study.

The restriction model consists to two components: MIT prediction on the arrival
fixes at the airports; and prediction of MIT propagation upstream from these arrival fixes.

41.1.2. MIT Assignment at Arrival Fixes

The process of MIT assignment at the arrival fixes was modeled by dividing it
into two decisions. First the timing of the MIT restriction was determined, followed by
the value of the MIT restriction.

The data avail able from the month of logs varied for each airport. Sample sizes
are shown in Table 3 for each airport. These different sample sizes suggest that the
models for different airports will vary in their accuracy. For PHL, for which the sample
sizeislarge, an accurate model was generated and the resulting model can be trusted with
some confidence. However, at JFK, not enough data was available to establish a model
that can be trusted with confidence. There was insufficient data to establish arelationship
between different parameters and a model had to be borrowed from one of the other
airports. The accuracy of the model for each airport reported later in this section will
reflect the effect of the sample sizes.
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Table 3. Number of cases of MIT identified across the arrival fixes and facility
boundaries over the month of November 2003.

Airport Number of Cases of MIT Identified
Philadelphia (PHL) 487
LaGuardia (LGA) 178
Newark (EWR) 118
Kennedy (JFK) 59
Teterboro (TEB) 86

Timing of MIT Restriction

In order to observe the correlation between demand and MIT restrictions, each
was observed through the course of aday. Figure 30 to Figure 34 show the frequency of
MIT applied on the arrival fixes at each airport as a function of time of day. Also shown
isthe demand (ASPM demand) at the airport as afunction of time of day, averaged over
the month. The analyses of both frequency and demand excluded days with GDP or GS at
the airportsin question.
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Figure 30. Frequency of MIT at PHL in the month of November, 2003, and average
ASPM demand for each 15 minute time period through the day.
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Figure 31. Frequency of MIT at LGA in the month of November, 2003, and average
ASPM demand for each 15 minute time period through the day.
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Figure 32. Frequency of MIT at EWR in the month of November, 2003, and average
ASPM demand for each 15 minute time period through the day.
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Figure 33. Frequency of MIT at JFK in the month of November, 2003, and average
ASPM demand for each 15 minute time period through the day.
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Figure 34. Frequency of MIT at TEB in the month of November, 2003, and average
ASPM demand for each 15 minute time period through the day.

These figures show some correlation between MIT applied at arrival fixes, and
demand at the airport. At PHL (Figure 30) thereis clear correlation between MIT
application and five of the arrival banks, which can be seen as spikesin demand. The
timing of MIT application is also seen to be consistent through the month — the frequency
is high and restricted to specific times of day, rather than being spread out over the whole
day. At LGA (Figure 31), thereislessindication of consistent times of MIT application,
asfrequency of MIT is spread out across the day with lower frequencies than were
observed at PHL. The correlation with demand is still however apparent. The same can
be said about EWR (Figure 32) and TEB (Figure 34). MIT application at JFK (Figure 33)
all occurs during a short period in the afternoon, although it does not occur with high
frequency. This period coincides with the afternoon arrival bank.

It isinsightful to see the effect of GDP/GS on the presence of MIT. This effect is
illustrated at PHL by comparing Figure 35 to Figure 30 above. Figure 35 was generated
in the same way as Figure 30, but the periods of GDP and GS were not omitted.
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Figure 35. Frequency of MIT at PHL in the month of November, 2003 for each 15 minute
time period through the day, for all days, including those with GDP & GS.
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The same trends are apparent with the majority of MIT application falling on the
arrival banks. This suggests that the inclusion of MIT during GDP/GS does not greatly
affect the timing of MIT application.

In order to determine the parameter to characterize the timing of the application of
MIT restrictions, anumber of parameters were compared to the occurrence of MIT. Each
parameter was compared to MIT application for each day separately, calculating a
correlation coefficient for each day. The correlation coefficients were then averaged over
all the days for which they were calculated. The correlation coefficients are shown in
Table 4 for anumber of parameters associated with demand and AAR. The parameters
were calculated for each 15-minute period through the day using a one-hour moving
window.

Table 4. Calibration coefficients between various parameters and the occurrence of MIT.
Coefficients were calculated for each day and then averaged.

Airport ASPM Demand AAR Scheduled | Sch. Demand Sch. Demand — AAR
Demand / AAR
PHL 0.679 0.077 0.649 0.646 0.642
LGA 0.465 0.105 0.415 0.410 0.408
EWR 0.528 -0.006 0.533 0.527 0.528
JFK 0.615 0.326 0.624 0.560 0.520
TEB 0.555 -0.228

Thereis no schedule at TEB, hence the absence of a Scheduled Demand and
associated parameters reported for this airport.

Parameters which include demand correlate better than AAR. The difference
between the correlation of ASPM demand and scheduled demand is small. This suggests
that the schedule is as good a representation of when MIT were put in place as the ASPM
demand, which includes the effect of queuing.

It shall be seen and discussed later that when looking at the value of MIT to be
applied, scheduled demand no longer correlates as well as ASPM demand. Sinceitis
likely that the facilities used the same parameter to decide on the timing as the value, the
parameter chosen to characterize timing of MIT application was chosen as ASPM
demand.

Having determined a characterizing parameter, the next step was to calculate a
threshold in this parameter, which alowed definition of the start and end times of the
restrictions to be applied. MIT is applied when the characterizing parameter is above the
threshold and not applied when the characterizing parameter is below the threshold. A
one hour moving window was used for the characterizing parameter. This window starts
15 minute before the period in which the restriction started (the start period) and
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considers the ensuing hour, ending 30 minutes after the end of the start period. This
smoothes the parameters and allows both duration and magnitude of the parameter to be
represented, asit isatype of integral. The moving window used in shown in Figure 36 as
window 2. Also shown are alternate moving windows 1 and 3 starting and ending at
different times. The position of the moving window isimportant at PHL, where the
spikesin demand are in the order of the length of the moving window. Window 2 skews
the window slightly to the future, allowing the parameter to represent the forecast as well
as the present.

window 3

window 2

* +wi ndow 1

v v

MIT Start time
I I I I I I I I >
—— time
15 minutes start period

Figure 36. Schematic of moving windows used to cal cul ate the smoothed value of ASPM
demand as it was compared to the threshold.

The value of the threshold was varied and used to calibrate each model to the
November data. In addition to the value of the threshold, two other characteristics of the
model were varied aswell. Thefirst is the minimum time period for which the thresholds
must be exceeded, for arestriction to be put in place. Since no restrictions shorter than an
hour were observed — except some that were cancelled early — one hour was taken as the
baseline. However, at PHL particularly, due to spikes in demand of short duration, the
thresholds were exceeded for less than an hour, but still have MIT in place according to
the log data. Since this minimum duration of demand exceeding the thresholdsislikely to
be different for different airports, it was varied from no minimum to 1 hour and used as a
second characteristic of the model, to calibrate the models to the November data. (No
minimum means that a restriction was put in place every time the threshold was exceeded
even if it was only in one 15-minute period.)

Since no restrictions in the data were observed to be shorter than an hour, any
restriction put in place for demand exceeding the threshold for less than an hour was
extended to afull hour.

The second additional characteristic of the model varied was the minimum period
of time between restrictions. If no limit is set on thistime, arestriction could end only to
start again in the next 15-minute time window. In the logs, restrictions were never
observed to be separated by less than one hour, and so a minimum limit on this duration
was needed. Again, thislimit islikely to vary from airport to airport as at PHL for



exampleit islikely to be less than an hour, due to the banked structure, with banks
sometimes only an hour apart — such as between the 16h00-17h00 bank and the 18h00-
19h00 bank. This characteristic of the model was also varied between no minimum limit
and 1 hour. (No minimum here means that restrictions were never merged even if one
started in the 15-minute time period after another has ended.)

Therefore the threshold and the two time periods mentioned were all varied and
modeled restrictions calculated for each combination of these characteristics of the model
for the whole month. These restrictions were then compared to the actual restrictionsin
place in November 2003. This comparison allowed calibration of the model with the
three characteristics selected for the most accurate model in the case of each airport. The
metrics used are described below, and refer to Figure 37:

Log restriction:

Modeled restriction:

- | N time

Under-predict Over-predict

Correctly Predicted
Figure 37. Comparison of modeled restriction with log restrictions.

e Overlap/(No overlap): Thefirst metric used was the ratio of the total overlap between
modeled restrictions and log restrictions (shown as “ correctly predicted” in Figure
37); to the total time when the model was incorrect — either over predicting
restrictions or under predicting restrictions (the sum of “over-predict” and “under-
predict” as shown in Figure 37). This metric gave an indication of how accurate the
model restricted time.

e (Over predict)/(Under predict): The second metric used was the ratio of restricted
time over-predicted by the model to restricted time under predicted by the model
(“over-predict” divided by and “under-predict” in Figure 37). This metric gave an
indication of whether the model was over predicting or under predicting when it got
restrictions incorrect.

e % of Restrictions correct: The third metric used wais the percentage of restrictions
that are correctly predicted by the model. If there is any overlap between a modeled
restriction and alog restriction, the modeled restriction is counted as correct. If there
is no overlap, the modeled restriction is counted as incorrect.. Any log restriction that
does overlap amodeled restriction is also counted as an incorrect prediction by the
model. The modeled restriction in Figure 37 would be counted as correct.

The criteriafor choosing the best characteristics included maximizing
Overlap/(No overlap) while ensuring that (over predict)/(under predict) was closeto
unity. The % of restrictions correct was used as an indication the overall effectiveness of
the model at predicting MIT.
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The results of the calibration process are shown in Table 5 and Table 6. The
accuracy of the model for the chosen characteristicsis shown in Table 5 and is quoted as
the three metrics. The threshold for each model, as well as the two minimum time periods
varied for the calibration process are shown in Table 6.

Table 5. Calibrated accuracy of timing of MIT application on arrival fixes as determined
from comparison with the logs for the month of November 2003.

Airport Overlap/(No overlap) (Over predict)/(Under % of Restrictions correct
predict)
PHL 1.50 1.12 71.8%
LGA 0.40 1.24 62.5%
EWR 0.41 1.89 64.7%
JFK 0.30 0.94 33.3%
TEB 0.22 1.45 35.5%

Table 6. Thresholds in demand for starting and ending MIT application and other
parameters that allowed the best calibration of the models with November 2003 data.

Airport Demand Minimum length of demand Minimum gap between
Threshold [ac/hr] exceeding threshold restrictions
PHL 56 15 min 15 min
LGA 38 15 min 30 min
EWR 50 30 min 60 min
JFK 40 45 min No minimum
TEB 26 45 min 60 min

The PHL, LGA and EWR models show better performance in terms of percentage
of restrictions correct than the TEB and JFK models. Thisis expected from the sample
sizesin each case (see Table 3). The overlap/(no overlap) metric isbest at PHL, but better
at LGA and EWR than at JFK & TEB. The banks at PHL made prediction of MIT easy,
since demand was consistently high during these banks, and they match up well with
observed restriction application (see Figure 30). At EWR and LGA, the MIT structure
was not as regular, although the indication was that it still followed demand (see Figure
3land Figure 32). Demand however did not peak the way it did at PHL, and so accurate
prediction of start and end times of restrictions was more difficult.
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The thresholds calibrated to above are all within 14% of the medians of demand

in the start period of MIT of the November data,
Value of MIT restriction
Having identified the timing of arestriction, the value of MIT by which the flights
are to be spaced was to be specified at each arrival fix. Thelog data analysis allowed
identification of a number of combinations of MIT applied on the arrival fixes at each
airport. The number of times each of these combinations of MIT was observed is shown

in Figure 38 to Figure 42 as a frequency, for al airports studied.
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Figure 38. Frequency of different combinations of MIT on the arrival fixesat PHL,
quoted as MIT at: BUNTS/ SPUDS/VCN / TERRI.
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Figure 39. Frequency of different combinations of MIT on the arrival fixes at LGA,
quoted asMIT at: LIZZI / RBV / NOBBI / VALRE.
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Figure 40. Frequency of different combinations of MIT on the arrival fixes at EWR,
quoted asMIT at: PENNS/ ARD / SHAFF.
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Figure 41. Frequency of different combinations of MIT on the arrival fixes at JFK,
quoted asMIT at: LENDY / ZIGGI / CAMRN / CCC/ LOVES.
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Figure 42. Frequency of different combinations of MIT on the arrival fixes at TEB,
guoted as MIT at: MUGZY / MAZIE / LEMOR.

From these figures it can be seen that the number of combinations of MIT
observed varies from airport to airport. At PHL and JFK for example, only 5 and 6
combinations were observed respectively. At JFK, thisis due to asmall sample size. At
LGA, 20 combinations were observed. The sample size for each airport (as shown in
Table 3) also affected how many occurrences were observed in each combination. At JFK
for example, a maximum of 2 occurrences was identified for all 6 combinations, once
GDP/GS time periods had been filtered out of the data.

The first step in the process to model the decision for determining the value of
MIT was to establish arelationship between a characterizing parameter and the severity
of MIT applied over the fixes during a given restriction. In order to remove the influence
of outliersin the data, the calibration process to determine this relationship only used the
datafor the MIT combinations that occurred more frequently — any combination with
more than two occurrences in the month of November was accepted for the calibration
process while all others were discarded. In the event that the accepted MIT combinations
did not cover the full range of severity of MIT, then particular combinations with one or
two occurrences were accepted such that the full range of observed severity was
represented.

At each airport, different combinations of MIT were identified as dominant. At
PHL, one combination of MIT isclearly dominant, i.e.: 10 MIT on BUNTS on the
PHL/ZNY boundary, 20 MIT on SPUDS, also on the PHL/ZNY boundary, 15 MIT on
VCN on the PHL/ZDC boundary, and 15 MIT on TERRI, aso on the PHL/ZDC
boundary.

Having identified the dominant combinations, the MIT values across the arrival
fixes were summed. This sum of MIT across the arrival fixes is a measure of the severity
of the MIT restriction applied. It was to this sum of MIT that various characterizing
parameters were correlated. This was done by calculating the average value of a number
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of parametersincorporating ASPM demand, scheduled demand and AAR, over each
restriction. These averages were then plotted against the sum of MIT across the arrival
fixesfor each restriction. The plot of the sum of MIT against ASPM demand at EWR is
shown in Figure 43.
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Figure 43. ASPM demand versus sum of MIT at EWR, with a straight line fitted to the
averages of the ASPM demand.

At each level of the sum of MIT over the fixes, the parameters were again
averaged and aline was fitted to the averages. The R? values of these curve fits were
compared to choose the characterizing parameter. Table 7 shows the resulting R? values
for avariety of parameters.

Table 7. R? values for various parameters plotted against sum of MIT values across the
arrival fixes

Parameter R?values

PHL | LGA | EWR | JFK TEB

Average ASPM Demand 0.988 | 0.773 | 0.905 | 0.150 | 0.877

Maximum ASPM Demand 0.990 | 0.665 | 0.924 | 0.160 | 0.740

Average Scheduled Demand | 0.128 | 0.226 | 0.139 | 0.079 -

Avg. Sched. Demand / AAR | 0.340 | 0.010 | 0.404 | 0.075 -

Avg. Sched. Demand — AAR | 0.405 | 0.028 | 0.532 | 0.096 -

Maximum Scheduled Demand | 0.006 | 0.073 | 0.146 | 0.289 -

Max. Sched. Demand / AAR | 0.442 | 0.144 | 0.070 | 0.256 -

AAR 0.264 | 0.603 | 0.852 | 0.063 | 0.048
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The R? values in Table 7 show clearly that although ASPM demand and
scheduled demand both correlated well with MIT when just considering the timing, when
looking at the MIT value, scheduled demand no longer correlated well. ASPM demand,
which reflects queuing effects, till correlated well. At thisincreased level of detail, the
schedule was no longer a reasonable representation of the traffic on which the MIT
decisions were based.

At TEB, no schedule is used, so no schedule data was available. At EWR, LGA
and TEB average ASPM demand correlated best. Maximum demand correlated slightly
better at PHL. At JFK, the correlation was poor for all parameters, but the sample size, as
mentioned above, was small, so the low R? value was not necessarily meaningful. Based
on these R? values, the parameter chosen to characterize MIT value was average ASPM
demand.

Having determined the characterizing parameter, the relationship between this
parameter and the sum of MIT values on the fixes was taken as the straight line fitted to
the data (shown for EWR in Figure 43 above). For PHL however, despite the good
correlation, it was also apparent that a single combination — 10/20/15/15 — was used on
86% of observed occasions (see Figure 38). The linefitted to the datais shown in Figure
44. The dataindicates that a sum of MIT of 60 (which equals 10+20+15+15) isthe
maximum observed sum of MIT, and that, independent of demand, MIT isnot only
capped, but normally applied at this value. It is therefore reasonable to apply a sum of
MIT of 60 independent of demand. Such amodel would yield an accurate prediction of
2003, but would not alow for any higher MIT when demand increased in future years. In
order to allow ahigher MIT in extreme cases, it was decided to alow 20/20/20/20 to be
applied —i.e. the most severer possible MIT combination. The demand above which this
MIT would be applied is determined by extrapolating the fit line to a sum of MIT of 80.
Thisyields a demand of approximately 80 ac/hr. So, at PHL, 10/20/15/15 is applied
independent of demand, unless ASPM demand exceeds 80 ac/hr, in which case
20/20/20/20 is applied.
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Figure 44. ASPM demand versus sum of MIT at PHL, with astraight line fitted to the
averages of the data.
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AT JFK, there was simply not sufficient data to build a reasonable model. Since
sufficient data was available at other airports, it was decided to use arelationship
developed at one of the other airports, to model JFK. EWR is most similar in terms of
having an afternoon bank structure, and so the EWR relationship between ASPM demand
and the sum of MIT on the arrival fixes was chosen to model JFK. The fact that JFK has
5 fixes whereas EWR only has 3 fixes is solved by the fact that MIT on CAMRN and
ZIGGI were always observed to be the same; and MIT on LOVES and CCC were aso
observed to always be the same. So the 5 arrival fixes at JFK are narrowed down to 3 —
LENDY, ZIGGI/CAMRN and CCC/LOVES.

Once the sum of MIT on the arrival fixes had been determined, the specific MIT
value on each fix was to be determined. There was an indication from the data that lower
MIT was placed on fixes with high demand, while higher MIT was placed on the fixes
with low demand. For example, over the month, 38.5% of demand at PHL arrived
through BUNTS, 7.4% arrived through SPUDS, 26.7% arrived through TERRI and
27.5% through VCN. The commonly used MIT combination at PHL was 10 MIT on
BUNTS —the fix with the highest demand — 20 MIT on SPUDS - the fix wit the lowest
demand —and 15 MIT on each of TERRI and VCN — the two fixes with medium demand.
This rule was found to accurately describe 85% of observations of MIT at EWR, 53% of
observations at LGA, 89% of observations at TEB, 20% of observations at JFK, and
>86% of observationsat PHL. This rule was also confirmed by the procedure elicited
during the site visits, and was therefore chosen to model specific MIT on the fixes.

No MIT was observed to exceed 20 miles on the arrival fixes. It was decided to
cap the MIT on the arrival fixes at this value, since even with expected increasesin
demand in future years, it was not expected that higher MIT would be used on the arrival
fixes, because it would result in excessive MIT propagated upstream.

For an airport with a given number of arrival fixes, each sum of MIT hasa
number of possible combinations of MIT over that number of arrival fixes. Not all of
these combination were however observed in the data. However, just because a
combination was not observed, does not mean that it could not happen, and so the model
was written to apply MIT according to the rule established with the relative demand on
the fixes, rather than according to the observed combinations of MIT only. An example
follows:

For asum of MIT =40 at EWR, where there are 3 arrival fixes, the following
alternative combinations of MIT on the three fixes are possible:

1. two 15s, one 10
2. two 20s, one0
3. one 20, two 10s

Alternative 1 was observed at EWR. Alternatives 2 and 3 were not however
observed. The model still allowed alternatives 2 and 3 to be applied, by following the
logic described following. Thislogic is based on observations of MIT application in the
data, and the rule mentioned above:

When the sum of MIT acrossthe arrival fixesis 40 miles:
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1. If thefix with the lowest demand has less than 10% of demand, apply 20 MIT (the
maximum MIT) on thisfix, and 10 MIT on the other two fixes.

2. If the fix with highest demand has more than 90% of demand, apply nothing on this
fix (the minimum MIT), and 20 MIT on each of the other two.

3. Otherwise, apply 15 MIT to the two fixes with lowest demand and 10 MIT to the
third fix.

Inthisway, al MIT combinations were made possible, with decisions being made
based on ratio of demand on each fix relative to total demand on the airport.

41.13.

The propagation of MIT was modeled as a set of rules of the following form: if
MIT at arrival fix XYZ is‘a’, then the propagated MIT to the upstream facility is ‘4’
starting ‘m’ minutes before the arrival fix restriction starts and ending ‘»’ minutes before
the arrival fix restriction ends. The propagation scenarios to be modeled were identified
by considering the flow networks identified for each airport along with actual MIT
restriction propagations observed in the month of November. Table 8 and Table 9 show
the facility boundaries considered as aresult of thisidentification analysis.

Table 8. Facility boundaries identified for propagation of restrictions at PHL & LGA

MIT Upstream Propagation

Airport | Arrival fix / facility | Facility boundaries for restriction propagation
1% propagation 2" propagation
PHL BUNTS / ZNY ZNY /| ZOB ZOB/ ZID
ZOB / ZAU
SPUDS / ZNY ZNY | ZBW
ZNY |/ ZzOB ZOB/ ZID
ZOB/ ZAU
VCN / ZNY ZNY | ZBW
VCN /zZDC No Propagation
TERRI/ZDC No Propagation
LGA LIZZI | ZNY ZNY /| ZzOB ZOB/ZID
VALRE / ZBW No Propagation
NOBBI / ZBW No Propagation
RBV /zZDC ZDC/ZTL
ZDC /[ ZIX
ZDC/ ZID
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Table 9. Facility boundaries identified for propagation of restrictions at EWR, JFK and

TEB.
Airport | Arrival fix / facility | Facility boundaries for restriction propagation
1% propagation 2" propagation
EWR PENNS / ZNY ZNY | ZzOB ZOB/ ZID
ZOB/ ZAU
SHAFF / ZBW ZBW /zOB
SHAFF / ZNY ZNY / ZzOB ZOB/ ZID
ZOB /| ZAU
ARD / zDC ZDC/ZTL
ZDC | ZJX
ZDC/ ZID
JFK LENDY / ZzBW No Propagation
LENDY / ZNY ZNY / ZzOB ZOB/ ZID
ZOB /| ZAU
CCC/zBW No Propagation
CCC/ZNY ZNY / ZzOB ZOB/ ZID
ZOB /| ZAU
LOVES / zBW No Propagation
ZIGGI / zDC No Propagation
ZIGGI / ZNY ZNY / ZzOB ZOB/ ZID
ZOB /| ZAU
CAMRN / zZDC No Propagation
CAMRN / ZNY ZNY [ ZzOB ZOB/ ZID
ZOB/ ZAU
TEB MUGZY | ZNY ZNY / ZzOB ZOB/ ZID
ZOB/ ZAU
LEMOR / ZNY No Propagation
LEMOR / ZBW No Propagation
MAZIE | ZzDC ZDC/ZTL
ZDC | ZJX
ZDC/ ZID

The propagation rules were derived from a statistical analysis of observed

occurrences of propagation in the November data. In some cases large sample sizes were
available, such as at PHL, where there were 84 cases of 10 MIT on BUNTS propagated
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to various values of MIT on the ZNY/ZOB border. Other scenarios had much smaller
sample sizes.

Analysis of the data revealed that in most cases there was clear dominance of a
particular MIT value propagated for each MIT value on the downstream fix or facility
boundary. For example, 10 MIT on BUNTS was propagated to 20 MIT on the ZNY/ZOB
boundary in 82% of the 84 occurrences of this scenario. The remaining 18% of
occurrences were distributed between various other MIT values including no propagation
at al. The means chosen to model propagation was to identify this dominant propagation
rule, and apply it to al occurrences of the scenario in question. In this example therefore,
the model would always propagate 10 MIT at BUNTS as 20 MIT on the ZNY/ZOB
boundary.

In some scenarios, a dominant propagation rule was not as easily identified, as
multiple options each had more than 30% of observed occurrencesin the data. In such
cases, al highly probable propagations were considered. The decision of which
propagation to choose in the model was made randomly, based on the likelihood of each.
For example, there were 76 occurrences of 20 MIT on the ZNY/ZOB facility boundary
for flows through BUNTS to PHL. 42% of these were propagated to 30 MIT on the
ZOB/ZID boundary. 50% were not propagated at al, and the remaining 8% were
propagated to other values. In the model therefore, both a propagation of 30 MIT and no
propagation were identified as dominant alternatives. The propagation applied was
chosen randomly, with a 42% chance of propagating as 30 MIT and a 58% chance (50%
+ remaining 8%) of no propagation at all.

An example of the rules applied is shown in Table 10 for flows through BUNTS
arriving into PHL.
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Table 10. The propagation rulesfor MIT at BUNTS, propagated to the ZNY/ZOB facility
boundary and the sample size on which each rule was based.

MIT at BUNTS MIT Propagated % use by % representation | Sample size
model of sample set
to ZNY/ZOB
10 20 100% 82% 84
Other values Not used 18%
15 30 @ PSB, 20 @ J152° 100% 100% 1
20 40 100% 100% 1
to ZOB/ZID
10 30 100% 100% 1
20 30 42% 42% 76
No Propagation 58% 50%
Other values Not used 8%
30 30 100% - No Data
40 30 100% 100% 1
to ZOB/ZAU
10 30 100% 100% 1
20 30 27% 27% 56
No Propagation 73% 68%
Other values Not used 5%
30 30 100% - No Data
40 30 100% 100% 1

Thereisno datafor the scenario of 30 MIT on the ZNY/ZOB boundary. The
propagation value chosen was therefore based on trends in rules for other MIT values on
this facility boundary.

Timing of the propagated MIT was similarly based on a statistical analysis of data
from the month of November 2003. The upstream restriction usually preceded the
downstream restriction, allowing the same flights to be metered at the downstream
facility as at the upstream facility. The difference between upstream and downstream
start times was calculated for all observed MIT propagations. The time difference with
highest frequency on each facility boundary, fix and destination airport combination was
chosen to be used in the model. Figure 45 shows the frequency of the difference in start
time for restrictions propagated from BUNTS to ZNY/ZOB for flows arriving into PHL.

" PSB isafix on the PHL arrival flow on the ZOB/ZNY boundary. J152 isajet route that also falls on the
PHL arrival flow, but is adjacent to the PSB flow. The two flows merge before reaching BUNTS.
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Figure 45. Frequency of occurrence of the difference between propagated restriction start
time and arrival fix start time at BUNTS, for flows arriving into PHL.

In the above case, the propagated restriction was chosen to start 15 minutes earlier
than the arrival fix restriction. The same analysis was performed for the end time. All
results for flows arriving into PHL are shown in Table 11.

Table 11. Thetiming rulesfor propagation of MIT for arrival flowsinto PHL.

Fix Arrival Fix One facility out Two facilities out
Start Time | End Time | Start Time | End Time | Start Time | End Time
BUNTS X y X-15min | y-15min | x-60min | y-60min
SPUDS X y X-15min | y-15min | x-60min | y-60min
VCN X y X-15min | y-15min | No further propagation
TERRI X y No propagation

In addition to MIT propagated from the arrival fix, MIT that was not propagated
or associated with any MIT on any other fix or facility boundary, was also observed on
facility boundaries,. These MIT were presumed to be in response to local constraints,
such as sector overload. These MIT were not modeled in this baseline model and were
excluded from the benefits analysis as described in Section 6.
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41.1.4. Mode Performance

The model was run at each airport for the selection of daysin November 2003 for
which contiguous host data was available, omitting days with GDP/GS. Host data was
needed for demand on each of the arrival fixes. The fraction of these days restricted by
the model was then compared to the fraction of the same period of time restricted in the
logs. The results are shown in Table 12. Also shown is the number of days for which
each fraction is calculated.

Table 12. Comparison of fraction of time in November 2003 restricted by the logs and by
the restriction generation model respectively

Airport | Log restrictions | Model Restrictions | # days
PHL 13.7% 11.7% 10
LGA 12.8% 22.2% 11
EWR 6.3% 9.9% 4
JFK 1.8% 1.9% 14
TEB 11.7% 7.2% 15

PHL and TEB are under predicted by the model, whereas EWR and JFK are over
predicted. LGA is also over predicted, but to a greater extent. Thisis dueto relatively
fewer restrictionsin place in the days analyzed than is typical when the whole month is
observed. The model is based on the whole month’ s data and so predicts more
restrictions. The metrics used for calibration, as shown in Table 5, indicate that over the
whole month, LGA over predicts by just 24% (over predict/under predict = 1.24.)

The use of the restriction generation model for extrapolation to future yearsis
shown in Section 10.1.
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4.1.2. Delay Flow Model

Arrival flowsinto an airport are delayed upstream of the TRACON by spacing
aircraft according to MIT restrictions, and within the TRACON by delaying aircraft to
meet runway capacity limitations. The delay flow model, a shown in Figure 27, is thus
separated in two components, aMIT spacing model and a TRACON delay model. Each
of these models, and their calibration against actual delays, are presented below.

MIT Spacing M odel

Delay under baseline operationsis calculated by applying the MIT identified by
the MIT restriction generation model described in Section 4.1.1. The identified MIT are
applied to the simulated arrival demand into each of the five airports studied, described in
Section 3.2. Because MIT restrictions are applied on facility boundaries, the MIT
restrictions calculated in the MIT restriction model are only applied at the meter fixes (at
tier boundaries) shown in the arrival flow network in Figure 18 and Appendix A that
coincide most closely with the facility boundaries. MIT are applied to the demand at
these facility boundaries according to adelay flow model. This model isillustrated in
Figure 46 below.

Fix 0 Fix 1 Fix 2
A > A > A
Aircraft * (unimpeded)
e o T — > =t +TTY, > L=t +TTY,
Aircraft 2
» 2y, mmeme-mee- > 12,= Max{t}, + Actual Sep, , %+ TT2,,} ----» %, =Max{ t%+Actud Sep,, 2 + TT?,}
D%y = 14— (5 + TT2y) D=1~ (7, + TT?)
™ —Actual aircraft x time of arrival at fix i

TT*. —Unimpeded transition time for aircraft x from fix i to ]
DX —Aircraft x delay fromfix i-1toi

Figure 46. Calculation of meter fix crossing times and delay according to distance based
restrictions (superscript = aircraft index, subscript = fix index).

Thefirst aircraft in a demand bank is flown through each meter fix according to
unimpeded transition times from meter fix to meter fix, asit should not be impeded by
any aircraft in front of it, regardless of restrictions. Meter fix crossing timesfor all
trailing aircraft are modeled relative to the first, unimpeded aircraft, according to the
restrictions in place and the time each aircraft under question takes to fly between the
fixes. Thisis done by calculating the aircraft arrival time at the meter fix wereit to be
separated from the leading aircraft in the queue by the specified MIT, and calculating the
time of arrival at the meter fix if the aircraft flew unimpeded. The actual time of arrival at
the fix isthe greater of these two times. Thisis presented in equation (4) below:
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‘ ‘ MIT . ‘
t = max{t’lj +—— ' a+TT" /1,/} 4
v =y

where ¢; represents the arrival time for aircraft i at meter fix j, and v/; represents
the speed of aircraft i at meter fix j. TT'; x represents the transition time for aircraft i from
meter fix j to meter fix .

The resulting time of arrival isused for calculations of fix crossing times at the
next fix downstream, and for the next aircraft in the queue, asillustrated in Figure 46.

The delay D', that must be absorbed by each aircraft, between each pair of fixes
Jj-1 andj, in order for the aircraft to meet the MIT requirements, was calculated as the
difference between the modeled time of arrival at afix, and the unimpeded time of arrival
at the same fix. In the case of an unimpeded flight this delay would be zero. Equation (5)
for thisdelay is asfollows:

D=t —(z"j_l +TTij’j_1) (5

where¢; and TT'; are as defined above, and D', , represents the delay incurred by
aircraft i between meter fix j and k.

MIT Spacing Model Calibration

The MIT spacing model was calibrated by adjusting the error in meeting the
specified MIT restrictions so as to equate the distributions of actual and modeled delay at
the TRACON boundary as closely as possible. According to interviews with TMCs on
the site visits actual separations are generally below the specified MIT restriction by
between 0 and 2 Miles, although the numbers vary by controller. The mean error in
meeting the specified MIT restrictions was adjusted so as to reduce the mean difference
between the actual and modeled delay at the TRACON boundary.

Because the mean error is expected to increase as MIT restrictions increase in
magnitude, the mean error was specified as a percentage of the specified MIT. This
percentage was then adjusted to calibrate the delay spacing model against actual delay.
The standard deviation in meeting the specified restriction was specified as afixed
number, of 2 nm, because it is not expected to increase as clearly with increasing MIT
restrictions. The model could be calibrated further by adjusting this parameter. The
intention was to adjust the standard deviation of the error in meeting the specified MIT
restrictions, to reduce the difference between the standard deviations of the actual and
modeled delay distributions at the TRACON boundary. This, however, has a second
order impact on the results, and was not completed due to time constraints.

The results of the MIT spacing model calibration are presented in Table 13. In
Table 13 pe-wit refers to the mean of the error in applying the specified MIT error, asa
percentage of the specified MIT, that calibrated best. ..v 7 refers to the standard
deviation of the error in applying the specified MIT error, in nautical miles. Dy refersto
the average actual delay at the TRACON boundary, calculated according to actual flight
arrival times at the TRACON boundary, relative to calculated ETAS at the TRACON
boundary. e.p refers to the mean error between the modeled delay and the actual delay
Da. Smilarly o..p refers to the standard deviation of the error between the modeled
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delay and the actual delay D4 Theratio of the mean error ..o and the actual delay D
is also presented, as a percentage. Finally P refers to the results of the t-test, with P the
probability that the means of the distributions of actual and modeled delay are equal. Any
probability greater than 0.05 indicates there is no evidence that the means are different.

Table 13. MIT spacing model calibration

airport | et | Sl L | e | e | MR | P
PHL 5% 2 1.5190 0.0381 4.0295 2.51% 0.7237
LGA 5% 2 1.7002 | -0.0056 | 4.6085 -0.33% 0.9695
EWR -10% 2 2.0969 0.118 4.9453 5.33% 0.5835
JFK 25% 2 3.8469 | -0.1656 | 7.8363 -4.30% 0.7915
TEB 15% 2 1.9406 | -0.0206 | 6.0665 -1.03% 0.9691

The resultsin Table 13 suggest that at most airports the separations applied by
controllersis greater than that specified. Only at EWR are the applied separations |ower
than specified. According to interviews, however, applied separations are generally lower
than specified, as suggested by the results for EWR. This suggests that some other factors
may be influencing the higher calibration separations. No further analysisinto these other
factors has been completed, due to time constraints.

Each airport was calibrated independently, to allow for modeling of different
procedures at different airports. Ideally, each specified MIT (10 MIT, 15 MIT, 20 MIT
etc.) would also be calibrated independently for each airport. However, due to time
constraints this was not completed, and may be completed in future work.

Flights unaffected by MIT Restrictions Metering

When no restrictions are applied to a flight, safety separation requirements are 5
MIT in ARTCC airspace. However, according to expert licitation from TMCs at ZNY,
and according to MCTMA researchers, most controllers separate aircraft by 7 MIT
instead, to ensure that this separation is not violated. A separation standard of 7 MIT is
thus applied in the modeling of the baseline instead of 5 MIT separation.

Evenif aflight isnot affected by MIT it may still not arrive at its ETA. Thisis
because the ETA represents an estimate of the arrival time given the aircraft’s entry time
into the system, and does not represent its actual arrival time. An error representing
deviation from the ETA is thus added for aircraft that are not delayed by MIT upstream
of the TRACON, and are thus modeled to arrive at their ETA at the TRACON boundary.
Thiserror is generated for each tier through which the aircraft flew unimpeded. The error
is sampled from anormal distribution centered at zero and with a standard deviation of
90 seconds. A 90 second standard deviation was chosen based on the average standard
deviation of the distributions of unimpeded transition time, which was calculated to be 88
seconds.
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4.2. TRACON Delay

Even when the MIT restrictions upstream of the TRACON are sufficiently high
that the TRACON arrival rate is lower than the airport capacity, aircraft may still be
delayed in the TRACON to ensure that runway separation requirements are met. Thisis
because the arrival flows entering the TRACON from different arrival fixes are not
coordinated, and aircraft from different arrival fixes need to be slotted together in the
final approach to the landing runway/s.

TRACON Delay Model

Figure 47 shows the TRACON delay model that takes asinput the ATAs at the
TRACON boundary that are the output of the delay flow model shown in Figure 27.

ATAs at TRACON
Broundary

l

Computation of Estimated
Times of Arrival Using Statistical
Unimpeded Transition Time

ETAs at Runway «——

AAR —— TRACON Delay Model

ATAs at Runway
Figure 47. TRACON delay model diagram

Unimpeded transition times between the TRACON boundary and the runway are
added to the ATAs at the TRACON boundary to derive ETASs at the runways. Then a
TRACON delay model adds any needed delay to each flight such that the AAR at the
runway is satisfied. The TRACON delay is added to the runway ETAS to compute
runway ATAsfor each flight.

The delay incurred in the TRACON is modeled as a function of the runway
capacity limitations. As described in Section 3.1.1 the airport AAR describes the overall
runway configuration capacity, although it is generally under-described by the reported
AAR. Instead an AAR between the reported AAR and the 100™ percentile of the
throughput observed under that reported AAR is generally the best description. The
AARSs chosen to constrain the arrival flows in the TRACON were thus used to calibrate
the TRACON model against actual TRACON delays. The TRACON model calibration is
described in detail below.

The arrival flows into the airport are metered to meet the applied AAR using time
dots, inasimilar way to the use of time based metering by McTMA. The TRACON
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model is different to the McTMA time base metering model, however, in that the
allocation of time slotsis applied only in the TRACON, and only after the aircraft are
metered by MIT upstream of the TRACON. All the delay is absorbed in the TRACON,
and noneis fed back upstream, asin MCTMA time based metering. By calculating each
aircraft’sdelay in order to fit it into atime slot calculated from the flight'sETA, the
demand from other traffic, and the applied AAR, each flight’s expected TRACON delay
IS estimated.

TRACON Delay Model Calibration

As described above the TRACON delay model was calibrated by adjusting the
AARs chosen to constrain the arrival flowsin the TRACON, so as to equate the
distributions of actual and modeled delay in the TRACON as closely as possible. The
AAR was adjusted by applying different percentiles of the capacity envel opes devel oped
for each airport, for each reported AAR, some of which are presented in Figure 8 to
Figure 12. The TRACON model was calibrated by reducing the mean difference between
the actual and modeled delay within the TRACON. Further calibration using other
parameters would be required to reduce the difference between the standard deviations of
the actual and modeled delay distributions at the TRACON boundary. However, asin the
calibration of the MIT spacing model, thisis a secondary effect, and was not completed
due to time constraints.

The results of the TRACON delay model calibration are presented in Table 14.
The percentile of the capacity envelopes that calibrated best for each airport isincluded in
the table. The t-test was completed on the results of the calibration to measure the
performance of the calibrated model against actual delays. The t-test measures the
probability that the means of the distributions of actual and modeled delay are equal.

In Table 14 Percentil ecaeny refers to the percentile of the capacity envelope that
calibrated best. D4 refers to the average actual delay in the TRACON calculated
according to actual transition times relative to estimated unimpeded transition times. pe.-p
refers to the mean error between the modeled delay and the actual delay Da. Similarly
op refersto the standard deviation of the error between the modeled delay and the actual
delay D4 Theratio of the mean error ..o and the actual delay D is also presented asa
percentage. Finally P refersto the results of the t-test, with P the probability that the
means of the distributions of actual and modeled delay are equal. P values greater than
0.05 indicate that there is no evidence that the means are different.

Table 14. TRACON delay model calibration

Airport Pemer[]ot/:]ecapEnv [z?;t] [ﬁ'ﬁ] [:18{2] lls_E[)é/o[])act P
PHL 91% 35031 | -0.0131 | 9.6961 | -0.37% | 0.9285
LGA 88% 35133 | 0.1949 | 85602 | 555% | 0.1109
EWR 88% 1.9129 | -0.1777 | 6.8739 | -9.29% | 0.0747
JFK 95% 12154 | -0.1422 | 5.6645 | -11.70% | 0.1733
TEB 96% 0.4702 | -0.0710 | 4.1549 | -15.30% | 0.4767

63



Theresultsin Table 14 suggest that LGA, EWR and PHL are more constrained
relative to the percentiles of the capacity envelopes observed than JFK and TEB. Thisis
expected as JFK and TEB do not show the same degree of saturation as the other airports.
The maximum throughput observed at these airports, from which the 99" percentile
capacity envelopes were developed, is thus expected to be closer to the applied constraint
on these airports under baseline operations, as identified in the TRACON delay model
calibration.

The TRACON throughput under the TRACON model was also compared to that
under actual operations. Table 15 below presents the throughput measured per quarter
hour under actual operations (Tactal), ad under modeled TRACON operations (Trracon),
and the difference between the two. It is clear that the differences are very low — less than
1 % of the actual TRACON throughput in all cases except TEB. At TEB the percentage
is higher primarily because the throughput at the airport is lower.

Table 15. TRACON throughput comparison under baseline operations

Average
. Average Average Average
. Percent”eCapEnv (TactuaTTRACON )
Airport Tactual TTRACON (Tactual~TTrRACON )
[%] [ac/hr] [ac/hr] [ac/hr] H actua
[%6]
PHL 91% 25.3 25.1 0.17 0.68 %
LGA 88% 24.2 24.2 0.01 0.06 %
EWR 88% 25.4 25.3 0.14 0.56 %
JFK 95% 17.9 17.9 -0.02 -0.09 %
TEB 96% 9.9 10.2 -0.29 -2.91 %

Asinthe MIT spacing model calibration, each airport was calibrated
independently, in order to model different procedures, and TRACON capacities for the
different airports. Thisis despite the fact that EWR, LGA, JFK and TEB are all in N90.
Thisis because, although each airport isin the same TRACON, the arrival flows are still
separate, and the delay able to be absorbed is thus independent.

Error in Meeting TRACON arrival sots

An error is added to flight arrival times at the runway to model TRACON
controller inefficiencies at meeting runway arrival sots. Even if aflight is not metered
within the TRACON, it may still not arrive at its ETA, because the ETA represents an
estimate of the arrival time given the aircraft’s entry time into the system, and not its
actual arrival time. An error representing deviation from aflight’'s ETA or arrival dot is
thus added to all flights. The error is sampled from a normal distribution centered at zero
and with a standard deviation of 90 seconds. A 90 second standard deviation was chosen
based on the average standard deviation of the distributions of unimpeded transition time,
which was calculated to be 88 seconds.



4.3. Holding Procedures

When aircraft must be delayed by an amount that is too great to be absorbed by
vectoring or speed control, the aircraft must be put into a holding pattern. Holding is,
however, generally avoided to the extent possible, becauseit is highly restrictive.
Holding is restrictive because the accuracy with which aircraft can be released from the
holding pattern to meet a specified aircraft separation is greatly reduced. Thisis because
there is significant variability in where in the holding pattern the aircraft could be, and in
which direction it is flying, when released. As mentioned above, N90 and ZNY do not
hold aircraft for N90 or PHL, while the surrounding facilities are able to hold aircraft
more effectively. There is however still limited holding capacity near the N90O boundary
in ZDC, and the amount of traffic from ZBW, where aircraft can hold near the TRACON
boundary, is considerably less than that from ZNY and ZDC. Consequently, a managed
reservoir such asisused at PHL TRACON, where aircraft are held close to the TRACON
boundary to provide areservoir from which arrivals can be pulled whenever the runway
isidle, isnot used in N90. In N90 the restrictions passed back are instead kept low
enough to ensure pressure on TRACON airspace and runways is maintained, while being
high enough to ensure that the delay needed to be absorbed can be absorbed.

When afacility is unable to cope with any more aircraft, because the flow into the
facility has not been metered sufficiently enough by the restrictions in place, no-notice
holding may be specified to the upstream facility. This requires the upstream facility to
hold all aircraft inbound into that facility, without any pre-planning, and can be difficult
and disrupting. No-notice holding is a standard procedure in PHL TRACON, where
arrivals are refused and forced to hold in the surrounding facilities. However, no-notice
holding is less common in N90, because of the limited opportunity to hold aircraft near
the TRACON boundary.

Baseline M odeling of Holding

In the baseline model holding is assumed to be a component of MIT and
TRACON metering in that holding delays aircraft so that they will meet either the
specified MIT restrictions, that they will not violate safety separations requirements en-
route or in the TRACON, and that they will not violate runway acceptance rates. By
constraining the baseline model with MIT, safety separations requirements, and runway
acceptance rates, as described in the sections above, holding does not thus have to be
modeled explicitly. The absorption of the required amount of delay is modeled,
irrespective of the method by which delay it is absorbed, be it holding, vectoring, or
speed control.

Modeling holding procedures explicitly would require modeling the causes of
going into holding, the number of aircraft able to be held, and release from the holding
pattern. The causes for holding may include ones other than runway and TRACON
capacity constraint such aslocal enroute weather and congestion. Such holding
procedures were considered irrelevant to MCTMA and were therefore not model ed.
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4.4. Internal Departure Release Procedures

Merging internal departuresinto N90 and PHL arrival flowsis particularly
important in ZOB, ZBW and ZDC, as each of these facilities have significant numbers of
internal departure to N90 and PHL®. After identification of agap in the overhead flow,
TMCs specify release times to internal departures which allow them to hit the gapsin the
streams at specified merge points’. This requires estimates of the transition times from
the airport to the merge point, and the speed with which the gap in the stream is moving.
The exact procedure by which release times are specified differs from facility to facility.
TMCsin ZBW make use of tables of times from airports to fixes to specify the required
release time, while TMCsin ZOB and ZDC make use of predetermined release points
from which it takes the same amount of time for an en-route aircraft to fly to the merge
point, asit does an internal departure to fly to the merge point from its departure airport.
Thisisillustrated in Figure 48. Due to the inaccuracy of the estimates, and to avoid loss
of capacity, as any gaps created cannot be closed, TMCs aim to release aircraft just ahead
of gap in the flow. Thisforces the aircraft to be slowed down in the air in order to slot
into the gap in the stream for which it was released, incurring unnecessary delays.

Gap inFlow Merge Point
—————— i s
Release Point | /

Internal Departure \\*~.

\ R

Figure 48. Internal departure release point

Baseline M odeling of Internal Departure Release

Internal departure release was modeled in the baseline model by allowing the
absorption of delay at those internal airportsidentified as significant (more than
approximately 1% of operations to the destination airport), so as to meet a specified MIT
restriction. Any delay required to be absorbed to meet a restriction was thus assumed to
be absorbed on the ground. MIT and safety separation requirements at any merge points

® Internal departures are released using DSP (Departure Spacing Tool, by Computer Sciences Corporation),
which coordinates departures from a number of airports. Departures are put on APREQ (Approval Request)
meaning that each departure must request the TMC at the Center to specify areleasetime. Thistime
includes a three minute departure window in which the internal departure must depart.

" Each TMC may develop a different release point on the radar screen at which he/she releases aircraft for
each airport.
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downstream of the internal airport were also enforced, thus modeling delay incurred so as
to fit into the overhead stream.

4.5. Miscellaneous Observations

Another limitation that was observed in the site visitsis the possibility of gridiock
effect between interacting flows in an airspace. An example was given in Section 3.1.3
where ZOB holds the N90 departures from ZNY when ZNY holds the N9O arrivals from
ZOB. ZOB holds the N90 departures because the proximity between the arrival and
departures airways makes the arrival holding pattern block the departure airways.
Because the arrival and departures are interdependent, where departures need to leave the
airports in order to make room for the arrivals to land, a gridlock effect is created where
both arrivals and departures are holding and waiting each for the other to advance.
Gridlock rarely materializes because the system reactsin time to prevent its extremely
adverse consequences. As the system approaches gridlock, however, it is expected that
the throughput of the affected resource be reduced. Because gridlock effects are
approached as congestion isincreased, the effect is expected to be similar to that of the
controller workload increase depicted in Figure 5. In other words areduction in the
resource throughput at extremely high congestion and delay levels.

Another observation that was made during the site visits is the lack of en-route
delay measurement. Delays are in general reported by controllers (using flight strips or
other mechanisms) and documented by traffic managersin traffic management logs only
if above 15 minutesin any sector. This usually occurs only when an aircraft is held as al
delays without holding are significantly below thislimit (see Section 3.1.3). However, as
aircraft incur below 15-minute delays in successive sectors the total accumulated delay
may be significantly above 15 minutes, none of it isreported. As aresult the traffic
managers have no notion of arrival delays except in the case of holding. As a feedback
about the delay level in the system they use the departure delays at the major airports.
These are also reported only if above 15 minutes. The traffic managers attempt to balance
arrival and departure delays in order to balance the arrival and departure flows and avoid
the gridlock effects that may result from imbalanced delays. Therefore, they monitor the
departure delays reported, and once above a certain limit they increase arrival delays
(through holding) to match the departure delays. However, with the lack of accurate
arrival delay measurement, the effectiveness of this procedure is questionable. One
possible use of MCTMA, which isnot yet addressed in this work, isto provide amore
accurate measurement of arrival delays at each meter fix along the route to destination.

Another observation that was noted during the site visits is the emphasis of the
Traffic Managers on the operations during thunderstorms. The most disrupting event in
the NASisusually thunderstorms that are localized and affect certain arrival gates, at
times of high demand (typically in the summer). One indication was made by aTMC to
the possible use of MCTMA to suggest rerouting of and assigning aircraft to the
appropriate fixes (open gates) during thunderstorms. This function is not currently
explicitly defined for MCTMA (in the next section) but may be possible to capture
through balancing of arrival flows and will be investigated with NASA McTMA
researchers.
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5. Identification and Modeling of MCTMA
Functionality

In order to identify and quantify the benefit mechanisms of MCTMA, the core
functions of MCTMA were identified and modeled. Based on review of TMA and
MCcTMA literature [2, 3, 4] and discussions with NASA domain experts, the following
functions of MCTMA were identified:

Time based metering, with “delay feedback” and “ capacity distribution”

Dynamic metering

Tiered metering

Demand visualization

Multiple facility coordination

Internal departure scheduling

Runway assignment (according to NASA’s McTMA researchers this function is not
currently implemented although it is described in [4])

Nougk~wdrE

Some of these functions are functions of both TMA and McTMA (such astime
based metering, dynamic metering, demand visualization, internal departure scheduling
and runway assignment), while others are specific to MCTMA (such as capacity
distribution, multiple facility coordination and tiered metering). Each function is
described in detail below, in the context of the queuing abstraction of the arrival flow into
N90 and PHL described in Section 2.2. This abstraction provides a means by which the
effect of each function can be analyzed, and benefit mechanisms identified accordingly.
Key benefit mechanisms and resulting quantifiable benefits are presented for each
function in Section 6.

While benefit mechanisms were derived for all the functions, only the most
important functions (based on NASA’ s feedback) were modeled and their benefits
assessed quantitatively, due to time constraints. The functions that were ultimately
modeled are:

Time based metering, with “delay feedback” and “ capacity distribution”
Dynamic metering

Tiered metering

Multiple facility coordination

Internal departure scheduling

agrwbdE

5.1. Time Based Metering with Delay Feedback and Capacity
Distribution

Function description

Time based metering isidentified to be the core functionality of MCTMA that
generates scheduled times of arrival (STAS) at meter fixes for which the MCTMA system
isimplemented. These STAs are calculated from estimated times of arrival (ETAS) at the
meter fixes. The calculation of ETAs assumes that the aircraft are unimpeded (as
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described in Section 3.2). STAs differ from the ETAs according to the amount of
metering required to ensure efficient use of the airspace, and is based on satisfying
sequence and schedule constraints, satisfying the required arrival rate at the downstream
meter fix (or runway), and the feedback of delay from downstream. MCTMA also
attempts to maintain afirst come first serve (FCFS) sequence, based on the ETAS. By
doing this, STA deviation from the ETAsis kept to aminimum. STAs are never specified
earlier than their corresponding ETAS, only at the same time or later.

The scheduling constraints associated with time based metering include [4]:

Meter fix acceptance rate

Gate acceptance rate

TRACON acceptance rate

Super stream class separation distance (MIT)
Meter fix blocked interval

Airport acceptance rate

Runway acceptance rate

Runway occupancy time

Wake vortex separation

Runway blocked interval

The resource with the most constraining of these constraints is the bottleneck in
the system, and defines the system service rate, and thus throughpui.

Two key components in the calculation of STAsfrom ETAs and arrival rate
constraints are “delay feedback” and “ capacity distribution”. Delay feedback isthe
distribution of delay between meter fixes to maintain pressure on the bottleneck (often
the runways) without exceeding the delay absorption capacity (delayability) associated
with each resource. Delay feedback is accomplished by the feeding back of delays
upstream, through meter fixes, when the downstream resource reaches its capacity limit
to absorb delays. Capacity distribution is the process of generating arrival rate profiles
(acceptance rate during successive time periods) for upstream meter fixes, according to
STAs propagated back from downstream. The STAs at each meter fix, which correspond
to downstream STAS, are counted to generate acceptance rate profiles for meter fixes
immediately upstream. These acceptance rate profiles are then used to generate STAs for
the upstream traffic. Using capacity distribution an aircraft is not forced to meet its STA
that is propagated from downstream if not able to or inefficient, rather another aircraft
may be substituted in its slot to avoid missing the slot, aslong as the acceptance rate
profileis not violated.

Time based metering enables delay feedback and capacity distribution through
MCcTMA'’s specification of the amount of delay to be absorbed in the airspace between
meter fixes and adjusting the scheduled meter fix arrival times (STAS) accordingly.

Also included in time based metering is the specification of afreeze horizon,
which is a set time period from the current time, for each meter fix, within which the
schedule is fixed and cannot be changed. It iswithin this freeze horizon that all the delay
required to meet the STA must be absorbed. The freeze horizon at DFW is currently 19
minutes, and those at PHL and N90 are expected to be similar. The freeze horizon is
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designed to be long enough to ensure that the controllers working the aircraft scheduled
at the meter fixes have enough time to absorb the delay required to meet the STA, but
short enough to ensure that the STAs remain dynamic enough to accommodate changing
constraints. The freeze horizons for different meter fixesin MCTMA are not likely to be
the same size. Particularly in some cases they may be less than 19 minutes.

Function modeling

Modeling time based metering requires definition of the flow network, and the
meter fixes where the STAswill be generated. The definition of the flow network is
highly specific to the airspace being modeled. The flows were identified for PHL and
N90 through expert elicitation from NASA and at the facilities included, as detailed in
Appendix A and Section 3.2 (Figure 49 shows as an example the flow network for JFK).
Also required is the definition of the system boundary relative to the points on each flow
at which metering will start. The system boundary is dependent on the extent of
MCcTMA'’s airspace coverage, which is also related to the length of the time line of
McTMA.

A — Meter fix

))» — Airport -
t, —Actual time of arrival at resourcei. ~
tsp — Internal departure Scheduled time of departure.
TTij — Unimpeded transition time from resourcei toj.
Dnij — Limit of absorbable delay between resourcei to j.

—N90 TRACON acceptance rate.

A\
2 T4 Fix 3
Dih 28

Figure 49. Network of meter fixes with system boundary and model inputs indicated

Other inputs to the modeling of time based metering include flight arrival times at
the outer boundary of the system, departure times for internal departure (departures from
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within the system boundary), unimpeded transition times between meter fixes,
constraints, and the acceptable level of absorbable delays between each pair of meter

fixes. Thisisillustrated for asingle flow into JFK in Figure 49.

ETAs, STAsand actual times of arrival (t) are calculated according to a number
of steps, asillustrated in Figure 50, and detailed step-by-step following. In thisway
ETAs, STAsand actual times of arrival are calculated at all applicable points, for all

flights.

aircraft

»-A > A > A > P
t, - [Ty > ETA, e » [T, | > ETA, - S = T [ > ETA,

Delay Feedback
STA, - '
2 & Local congtraints

v
Capacity Distribution
(Rate Profiler)
v
ARP,
STA, < Delay Feedback, < S1V'A
Lt & Local constraints »
v
Capacity Distribution
(Rate Profiler)
v
ARP,
v
4~ STAy,
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>t > € | 77T >t > €23 "
t; —Actual time of arrival at resourcei.

ETA; - Estimated time of arrival at resourcei.
STA, —Scheduled time of arrival at resourcei.
ARP, — Acceptance rate profile at resourcei.
Tmyo- Unimpeded transition time from fix i to j.
g — Error from resourcei to j in meeting STA.

Figure 50. Calculation of STAs and actual times of arrival t;

| Local constraints (AAR)

< STA; <~

1. All flight ETAs are calculated at all applicable points (thisincludes al metering
points on the aircraft’ s route downstream of the aircraft’s current position). As
detailed in Section 3.2, this requires as inputs each flight’ sinitial conditions,
unimpeded transition times to the downstream metering fix in the flight plan (TTs),
and unimpeded transition times between subsequent points. Asillustrated in Figure
50, in this manner each flight's ETAs are calculated for all the applicable points,
working downstream from the system boundary to the runway threshold.

2. Eachflight's STA is calculated at the runway according to the TMA algorithm
described in the Dynamic Planner document by Gregory Wong [4]. This algorithm,
referred to as f;,,, in Equation (6), accounts for local scheduling constraints listed
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above, including runway acceptance rates, TRACON acceptance rates and separation
requirements for safety.

STA,,, = S (ETA

rwy !

local scheduling constrai nts) (6)

Thelocal scheduling constraints in Equation (6) when applied at the runway included
only the runway acceptance rate. The runway acceptance rate capacity is estimated as
the limit throughput observed using historical data and is modeled as a function of the
departure rate as presented in the capacity envelopesin Section 3.1. It was assumed
that the runway acceptance rate capacity is enough to ensure the safe separation
between aircraft. Specific separations between pairs of aircraft would require runway
assignment knowledge, which was not modeled and not assumed as a function of
MCcTMA as described above.

. The STAs at the upstream meter fixes i are then calculated according to the STAs at
the runway or downstream meter fix i+1; the unimpeded transition time 77,
between the meter fix under question and the downstream runway or meter fix; and
the feedback of delays from the downstream runway or meter fix, asgivenin
Equation (7). The feeding back of delays from the downstream runway or meter fix,
given by function /" in Equation (7), is based on the threshold of delay that can be
absorbed between the meter fix and the downstream runway or meter fix (Dy;i+;), and
the amount of delay that was not able to be absorbed in the downstream airspace
(Delay Feedback in Equation (7)). Thisfunction is such that if more delay must be
absorbed than the delay threshold, only the delay threshold is allocated for absorption
at the fix under question (where the delay threshold is computed as described in
Section 3.1.3). Therest of the delay is fed upstream to the upstream meter fix.

STA, = STA,,, - il T S (Drhi,i+l' Delay Feecback) (7)

. Through capacity distribution and the rate profiler process, an acceptance rate profile
isgenerated at each meter fix i, according to the STAs calculated in step 3. Thisis
done by counting the number of STAsin bins using the sliding window described in
the Dynamic Planner document by Gregory Wong [4]. These acceptance ratesin
addition to the safety separation requirements become the local scheduling constraints
in Equation (6) applied at meter fix i in step 5.

. New STAs are then calculated at each meter fix i using the TMA algorithm, Equation
(6) applied at meter fix i: STA, = f,,,,(ETA,,local scheduling constraints) , according

to the ETAs at meter fix i and the local scheduling constraints at meter fix i. These
local scheduling constraints include the arrival rate profile and the safety separation
requirements (7 Nautical Miles), both of which the STAs are ensured not to violate.
These STAs may specify a different sequence to the earlier STAs calculated in step 3
based on the delay feedback.

In this manner each flight's STAs are calculated for all the metering points, working
upstream from the runway threshold to the delay boundary.

As mentioned in Section 3.2 unimpeded transition times between meter fixes 77 are
estimated through analysis of historical track data. Similarly, the delay thresholds D,
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between tiers are estimated based on expert elicitation and data analysis as mentioned
in Section 3.1.3.

Both the delay threshold and the capacity constraints are model parameters that are
varied to represent the effect of different benefit mechanisms that will be described in
Section 6.

6. Actual times of arrival at the meter fixes and at the runway threshold (t; and t,.,,,), are
calculated according to the STAs at the meter fixes, and an error due to variability in
meeting the STASs specified. In time based metering controller imperfectionin
advising the aircraft to meet their STA lead to the actual time of arrival at meter fixes
differing from the specified STAs by an error, €. Thus, the actual time of arrival is
calculated as follows in Equation (8):

t,=STA, + ¢, (8)

The error € was identified from previous NASA TMA field research to be centered
around zero, with a standard deviation of 150 seconds. However, based on
consultation with NASA’s McTMA researchers 150 seconds was considered
excessive and the error € was modeled as a normal distribution centered around zero,
with a standard deviation of 90 seconds, and maximum and minimum of two standard
deviations.

From the actual times of arrival at the meter fixes and runway threshold, the system
throughput (t) and aircraft delay are calculated. These are key parametersin the
benefit analysis. The system throughput is calculated as the average resulting flow
rate at the final resource, which is calculated according to the actual times of arrival
at the runway threshold.

Delay at each meter fix, and at the runway threshold (D; and Dyy), is calculated as
the difference between the actual time of arrival at the meter fix and the
corresponding ETA as shown in Equation (9).

D, =t,— ETA, €)

5.2. Dynamic Metering

Function description

Dynamic metering refers to the dynamic nature of MCTMA in which STAs are
recalculated every 12 seconds, up to the freeze horizon (typicaly 19 minutes), after
which the STAs become fixed. Thisisin contrast to current operationswhereaMIT
restriction generally remains unchanged for the duration of the restriction, which may
extend to few hours.

Function modeling

While STAs were not updated every 12 seconds, the dynamic nature of
MCcTMA'’ s time based metering was modeled by ensuring that STAs are calculated to
meet variable acceptance rates and to match variable demand rates. It was a so captured
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by updating the STAs between upstream tiers and downstream tiers adjusting for
accumulated errors in meeting the upstream STAS. The error in meeting the STA was
added to each STA, at each tier, limited so as not to allow the ATA at the fix to be earlier
than the ETA. Also, because MCTMA updates ETAs and recalculates STAs every tier, it
isableto adjust for the errors incurred in upstream tiers. Thiswas modeled by sampling
an error from the error distribution, adding it to the STA of the tier in which the error was
incurred, and then subtracting it from the amount of delay to be absorbed in thetiers
downstream. This was done because MCTMA would adjust the STAsfor thetiers
downstream to account for the error upstream. The change in the amount of delay to be
absorbed in each downstream tier was limited in that the resulting adjusted amount of
delay to be absorbed must be greater than zero, and |ess than the delayability of thetier.

5.3. Tiered Metering

Function description

Tiered metering refers to metering at a number of meter fixes on each arrival
flow, extending a number of tiers upstream from the destination airport. STAs areto be
specified at each of these meter fixes. Current TMA implementations only meter at the
TRACON arrival fixes, but MCTMA isto meter at as many as 3 tiers of meter fixes. Tiers
are carefully located according to where they would be most useful, such as at facility
boundaries, merge points and arrival fixes. Thetiers are expected to be approximately
100 nm, 200 nm, 300 nm and 400 nm from the TRACON boundary, athough there will
be significant deviation from these arcs. The exact location of the meter fixesis still
under development, and is discussed in greater detail in Appendix A. Regional Metering
isan extension of this concept, which extends time based metering further upstream to
the entire en-route environment.

Function modeling

Tiered metering is modeled in the flow network to which time based metering is
applied, as discussed above. The location of each meter fix is significant to the estimate
of anumber of the parametersin the model including the delay threshold Dy, transition
times TT between meter fixes, and freeze horizons. STAs are propagated through merges
and splits according to delay feedback and capacity distribution.

5.4. Demand Visualization

Function description

Demand visualization refers to the function of McTMA whereby demand can be
visualized on loadgraphs and timelines. L oadgraphs show demand according to ETAS
and STAs (pre-metered demand and metered demand), capacity, and expected delay. The
timelines show each aircraft’ sETA, and STA. Using the demand visualization function
TMCs may use MCTMA as awhat-if analysistool in order to assist in selecting more
optimal MIT restrictions.
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Function modeling

Demand visualization will not be modeled explicitly. Instead each mechanism by
which benefits are realized from demand visualization will be modeled explicitly. It was
planned to include modeling awhat-if capability for MCTMA through the use of an
algorithm to select optimal MIT restrictions as discussed in detail in Section 6.7.
However, after consultation with NASA’s MCTMA researchers (at the second phase
briefing), it was decided not to model the what-if functionality of MCTMA sinceitisno
longer planned for, neither as a permanent function, nor as atransitional phase functionin
the McTMA deployment. Some benefit mechanisms enabled by the demand visualization
are modeled as described in Section 6.

5.5. Multiple Facility Coordination

Function description

Multiple facility coordination refersto the coordination between all facilities
involved in the arrival processthat is enabled by McTMA. Thisincludesthe TRACON,
surrounding Centers, and Centers adjacent to these Centers, if involved in the arrival
process. For New York TRACON (N90) and Philadelphia TRACON (PHL), the
associated centers are New York ARTCC (ZNY), Boston ARTCC (ZBW), Washington
ARTCC (ZDC) and Cleveland ARTCC (ZOB). Atlanta ARTCC (ZTL) and Indianapolis
ARTCC (ZID) are aso involved in the arrival process but are not considered at this stage
because of the cost limitations on the initial implementation of MCTMA. With the use of
McTMA all these facilities coordinate their arrival flows so that aircraft do not arrive at
merge points with flows from other facilities at exactly the same time, but instead slot
together with a minimum of resequencing. This leads to benefits, a number of which are
discussed under other functions. The benefit mechanisms are detailed in Section 6.8.

Function modeling

Multiple facility coordination is modeled implicitly to time based metering and
tiered metering as STAs are generated for flows merging from different facilities and
transitioning between upstream and downstream facilities. Modeling of specific benefit
mechanisms of facility coordination is discussed in Section 6.

5.6. Internal Departure Scheduling

Function description

MCcTMA specifies release times for departures that are internal to each Center in
which MCTMA isinstalled, and are destined for the TRACON for which MCTMA is
implemented. This ensures that these internal departures are included in the time based
metering of the arrival traffic into the TRACON. However, because they are not en-route
they are scheduled into the arrival flow before they take off. They are allocated STAS,
like any other flight, but absorb the delay for the first meter fix on the ground, before take
off. This means that delay need not be absorbed in the limited airspace between the
departure airport and the first meter fix.
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One major complication dealing with internal departuresis the large uncertainty
in their scheduled departure time and estimated time on the ground. This large
uncertainty reduces the accuracy of estimating the demand on the TRACON and runway
system for metering and for deciding on landing slots for the internal departures. This
issue remains a challenge and aresearch areafor MCTMA.

Function modeling

In the MCTMA model, internal departures are included in the generation of ETAS,
and assignment of STAs and departure release times. As described in Section 3.2, internal
departures enter the system at their actual takeoff time (measured by the first track) rather
than at their scheduled departure time. The ETASs are calculated based on the average
time to arrive at the first meter fix after departure, and then subsequent meter fixes. The
release time is then based on the assigned STAs at the downstream runway and meter
fixes, and any delay required in addition to the actual takeoff time is absorbed on the
ground. Therefore, for simplicity and conservatively, modeling internal departures here
does not capture the impact of MCTMA on the original takeoff time. Thiswould require
using scheduled departure times and estimates of the time spent on the ground, and
dealing with their inaccuracies, which are still a subject of research for MCTMA.

5.7. Runway Assignment

Function description

According to [4] MCTMA includes afunction that assigns runways to arriving
flights by means of arunway assignment algorithm designed to reduce delay in the entire
system. However, according to NASA’s MCTMA researchers this function is not
currently implemented and the ATC operators may instead set runway assignment
manually. Therefore, this function has not been modeled in this benefit assessment.
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6. Identification and Modeling of MCTMA Benefit
Mechanisms

The benefits of applying MCTMA to the PHL and N90 arrival flows are identified
by applying the functions of MCTMA identified in Section 5 to the constraints and flow
management techniques of the PHL and N90 arrival flows identified in Section 3. First
the benefit mechanisms identified in TO10 [6] and TO33 [7] are reviewed. Then aformal
method for mapping McTMA functions into benefits is outlined and used in the
derivation of the benefit mechanisms.

6.1. Review of Previous Studies

The benefits of TMA and McTMA were identified through the modeling of afew
key benefit mechanismsin TO10 [6] and TO33 [7] respectively. These are described
below:

TO10 [6] identified the following benefit mechanisms for TMA:

1. Time-Based Arrival Metering — Time based as opposed to distance based arrival fix

metering.

Arrival Fix Delivery Accuracy — Improving the accuracy in meeting STAS.

Internal Departure Release — Internal departure delays are reduced by more efficient

internal departure release into arrival gaps.

4. Center/TRACON Delay Distribution — An optimum balance between fuel burn
savings, obtained through the absorption of delay in higher altitude ARTCC airspace;
and runway system throughput, obtained through increased pressure on the runway by
absorbing delay in the TRACON.

TO33 [7] identified the following benefit mechanisms for MCTMA at PHL.:

1. Demand Visualization — Visualization in time lines and load graphs allowing TMCs
to plan to fully exploit an available arrival rate.

2. Coordination of Restrictions— The use of what-if functionality to test which MIT
restrictions meet the available arrival rate, and balance delay and workload.

3. Shut-Off Decisions — Improved efficiency of shut-off and flow-resumption decisions

4. Off-loading to Reliever Runway — Identification of flights that can be off-loaded to a
reliever runway

TO33[7] studied three different concepts —a TRACON centric concept, which
uses McTMA for demand visualization only, and does not implement time based
metering; afully dependent concept, in which time based metering is implemented
completely; and atransition concept, which applies time based metering to one ARTCC
flow, leaving the other ARTCCsto operated distance based metering. According to
MCcTMA researchers MCTMA is now to operate with full time-based metering, using the
fully dependent concept only. In TO33 each of these concepts were modeled separately,
and included the modeling of the appropriate benefit mechanisms described above. Not

WN
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all of the benefit mechanisms were modeled however. In particular, the off-loading to a
reliever runway was not model ed.

TO33[7] also identified the following operational limitations:

1. Availability of airspace for metering/vectoring — Small sector size leadsto early
holding.

Unavoidable delay — Not all delay can be addressed by CTAS.

Proximity of ZOB/ZNY boundary — Some delays must be incurred through MIT
restrictionsin ZOB.

4. Inherent inaccuracy of Miles-In-Trail approach — Sub-optimal selection of restrictions
by TMCs.

Accuracy of compliance to restrictions — Error associated with meeting restriction.
TMC workload — Sub-optimal selection of restrictions by TMCs

No clear formal procedure was followed in TO10 [6] or TO33 [7] for the
identification of benefit mechanisms. Instead the benefit mechanisms were described
only qualitatively, making the mapping of functions to benefits unclear. This makes it
unclear whether or not all benefit mechanisms were identified, implying that benefits
may have been underestimated.

W

o U

It was thus decided that a more formal, reviewable processis required for the
identifications of benefit mechanisms, as described below in Section 6.2.

6.2. Analysis of Benefit Mechanisms

For the purpose of clarity, consistency, and completeness, functions, constraints,
benefits, and benefit mechanisms were formally defined in Section 2.1. Based on these
definitions, the benefits of MCTMA are identified by applying the functions of MCTMA
identified in Section 5 to alleviate the current operations constraints and limitations
identified in Section 2.3. A function excites a benefit mechanism by alleviating system
constraints, which creates a benefit. This process results in a mapping from functions to
benefits through benefit mechanisms. The mapping of functions to benefitsis not one to
one, nor are there a consistent number of stepsin each benefit mechanism.

Charts of the mapping from functions to benefits through benefit mechanisms
were developed to improve clarity and reviewability, and are included with the
descriptions of the benefit mechanisms. A single chart is presented for each MCTMA
function, followed by a description of each mechanism enabled by the function under
consideration. The following definitions apply to the charts:

Bold shaded blocks represent MCTMA functions.

e Normal shaded blocks represents characteristics of the function from which they are
extracted.

e Bold unshaded blocks represent quantifiable benefits.

e Normal unshaded blocks represent intermediate steps between a function and a
benefit, which make up MCTMA benefit mechanisms.

e Black blocks with white writing represent direct economic benefit (used in Section 8).
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e Anarrow (to afunction) represents “enables’ (i.e. one function enables another
function)

e Anarrow (to abenefit or intermediate step within a benefit mechanism) represents
“resultsin” (i.e. one function resultsin a benefit)

e Dotted arrows represent an effect that is not a current MCTMA benefit, or benefit
mechanism, but through enhancement of the functionality of MCTMA, may become
one. These benefits or benefit mechanisms shall not be model ed.

e Merging arrows mean that more than one function or benefit mechanism enables or
resultsin a particular function, benefit or benefit mechanism.

e Forking arrows mean that more than one function, benefit or benefit mechanismis
enabled by or results from a particular function, benefit or benefit mechanism.

When a modeling parameter can be related directly to abox in the charts, the
parameter isincluded in parenthesis below the block.

The functions of McTMA for which benefit mechanisms are described are as
follows:

Time based metering

Delay feedback and capacity distribution
Dynamic metering

Tiered metering

Demand visualization

Multiple facility coordination

Runway assignment

Internal departure scheduling

N GaA~WNE

Although delay feedback and capacity distribution were described as part of the
time based metering function in Section 5.1, because they are an integral part of the STA
generation algorithm, they are considered as separate functions here, for the purpose of
mapping to benefit mechanisms. Benefit mechanisms for each function are described in
detail in Section 6.3.

6.3. Benefit Mechanisms of Time Based Metering
Time based metering is afunction of MCTMA and refers to metering of the arrival

flow by specifying times of arrival at designated meter fixes. The mapping of the benefits
of time based metering is presented in Figure 51.
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Figure 51. Benefits of time based metering
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Time based metering has the following characteristics:

The benefit mechanisms associated with each of these characteristics are

presented on the following subsections.

6.3.1. Aircraft by Aircraft Metering

Aircraft by aircraft metering refers to the metering of individual aircraft
independently, and not relative to the aircraft that they are trailing, asin current
operations with MIT or Minutesin Trail (MinlT) metering. The benefit mechanisms of
aircraft by aircraft metering are presented in Figure 52.
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Figure 52. Benefit mechanism of aircraft by aircraft metering
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Metering each aircraft independently means that any single aircraft’s delay
relative to its STA is not propagated, or rippled, upstream. Rippling occurs when a
leading aircraft is delayed, and the trailing aircraft is metered relative to the delayed
leading aircraft. It thus incurs the same delay asthe first aircraft, as do all following
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aircraft. In aircraft by aircraft metering delay is not rippled, as an aircraft’s STA is not
dependent on the leading aircraft, except to ensure the 5 MIT safety separation limit.
Only if this safety separation were to be broken would delay be rippled upstream.
(Alternatively, the delayed aircraft could be pulled from the schedule and rescheduled in
the back of the sequence, avoiding any delay rippling.) Therefore, no rippling of delay
upstream reduces average delay.

A reduction in the upstream rippling of delay resultsin increased metered demand
because fewer gaps are opened in the arrival stream. Increased metered demand in turn
resultsin increased use of the available capacity of the downstream resources as more
pressure is applied on them. Applied to the constraining resource this resultsin fewer idle
slots and thus increased throughput.

A reduction in the rippling of delay resultsin a more stable and robust schedule.
Thisis expected to result in areduction in the variability in the metered demand. Reduced
variability in metered demand resultsin an increase in how much of the available
capacity isused, asillustrated in Figure 53. The shading under the capacity in Figure 53
represents periods when demand drops below capacity and capacity is not fully used.
These shaded regions are reduced when the variability in demand is reduced. Increased
use of available capacity results in fewer idle slotsin the flow, and thus, if applied to the
constraining resource, increased system throughput.
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Figure 53. Effect of reduced variability in metered demand

Reduced variability in metered demand also resultsin areduction in delay
directly. Thisisillustrated in Figure 54. Variability can cause a high demand, followed
by alow demand, averaging over the entire period to an average demand. If the service
rate were equal to this average demand, the overall throughput would also be equal to the
average value. However, those aircraft arriving when the demand was high would incur
significant delays asillustrated in the upper part of the figure. If the aircraft arrived at the
average demand rate in the first place, however, the throughput would still be average,
but none of the aircraft arriving would incur significant delays, asillustrated in the lower
part of the figure. The average delay is thus higher when the variability in demand is
high, even if the overall throughput is maintained at the same level.
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Modeling of Aircraft by Aircraft Metering

Modeling of this mechanism is predominantly implicit to the modeling of time
based metering described in Section 5.1, as aircraft STAs are specified without reference
to the leading aircraft. In the modeling of distance based metering however, described in
Section 3, STAs are calculated from MIT restrictions, relative to the leading aircraft’s
time of arrival at the meter fixes, and thus delays are rippled. Explicit modeling is
however required for the controller action in time based metering, when aflight islate
enough to infringe on the safety separation limit of the following aircraft. The trailing
flight must then be delayed, or the late flight rescheduled. This was modeled by
calculating the separation between aircraft at each meter fix, according to actual times of
arrival (t). These were then adjusted if needed, delaying the trailing aircraft by the
amount required to ensure that 7 MIT (a conservative separation used by McTMA instead
of 5 MIT) safety limits are maintained. A 7-mile separation requirement is currently
imposed at all fixes/tiers.

6.3.2. High Resolution Metering

Higher resolution metering than in current operations is a characteristic of time
based metering, and refers to the resolution with which restrictions can be applied. MIT
restrictions in current operations are specified in 5 MIT increments, which at a speed of
200 knots provide 1.5-minute time separations. MCTMA calculates STAs to the nearest
second. Although STAs are presented to the controllers to the nearest minute, more than
one aircraft can be presented in the same minute slot, as long as the safety separation
requirements are maintained. According to consultation with MCTMA researchers, it is
also reasonabl e to assume that the delay values shown in the metering lists given to
controllers at final MCTMA metering fixes (where little delay can be absorbed, for
example, thosein ZNY where 1-2 minutes can be absorbed at most) will be in tenths of
minutes (for example 0.6 minute). The benefit mechanisms of high resolution metering
are presented in Figure 55.

82



Reduced variability
in metered demand

Reduced
average
delay

. Increasein
Accurate balancing metered demand
of flow from
different streams Less
Time Based High resolution - holding
Metering " metering Avoid qnder
metering
Increased use of Iner
availablle capacity > throughput
More accurate metering Avoid over (fewer idie slots)
to match capacity "] metering O]

Figure 55. Benefit mechanism of high resolution metering

Higher resolution metering allows more accurate metering to match the available
capacity. Thisisillustrated in Figure 56, which displays the metering rate (per hour)
achieved in ssimulation applying different values of MIT and time based metering to a
stream of traffic. The distance based MIT increments of 5 could only achieve discrete
levels of metered rate. On the other hand time based metering was able to match any
imposed metered rate (for example arate of 27 arrival per hour in the figure), which was
not achievable through MIT. (The plots in Figure 56 were generated using a simulation of
distance based and time based metering applied to a Poisson arrival process). In the case
of MIT metering (distance based metering), the resolution islow, and alot of capacity
can be lost. However, in the case of time based metering, the resolution is considerably
higher, and consequently the flow can be metered to reduce the flow rate to aimost
exactly the correct level.
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Figure 56. Resolution of distance based and time based metering

More accurate matching of capacity means that both over-metering (where
metered demand is too low) and under-metering (where metered demand is too high) can
be avoided. Avoidance of over-metering resultsin an increase in the use of available
capacity. Applied to the constraining resource this results in fewer idle slots and thus
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increased throughput. Avoidance of under-metering resultsin less holding (or other
means to absorb the excessive queue) which results in reduced average delay.

Higher resolution metering also results in more accurate balancing of flows from
multiple streams. Particularly merging flows can be metered more precisely according to
the demand and to the constraints propagated upstream. Each individual aircraft is
metered to fit into a gap in the stream into which it isto merge, reducing the gapsin the
arrival stream and reducing the variability of the flow after the merge point. Reducing the
gapsin the arrival stream results in increased metered demand, which in turn resultsin
increased use of the available capacity of the downstream resources, as discussed in
Section 6.3.1. Applied to the constraining resource this results in fewer idle slots and thus
increased throughput. As discussed in Section 6.3.1 reduced variability in metered
demand also resultsin an increase in the use of available capacity. Applied to the
constraining resource this results in fewer idle slots and thus increased throughput.
Reduced variability in demand also results in reduced average delay directly, as discussed
in Section 6.3.1.

Figure 57 compares time based metering to distance based metering applied to
two streams with imbalanced flows. In the first demand peak the demand was equally
high from both streams. In this peak both 10 MIT and time based metering were able to
meter the demand to the level imposed (the horizontal line). The second demand peak
was caused by high demand from only one of the two streams. At this peak, time based
metering was able to match the metered demand restriction while using 10 MIT resulted
in aloss of capacity. It is also interesting to note that the recovery of the throughput to
match the demand again under time based metering was faster than under distance based
metering in both peaks. (The plots were generated using Poisson arrival processes).
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Figure 57. Better balancing between streams using time based metering



Modeling of High Resolution Metering

The high resolution metering is modeled explicitly by the resolution specified in
the MCTMA and baseline models, which is according to MCTMA specifications (1
second but specified to the minute) and current operations (5 MIT), respectively.

6.3.3. Independence from Aircraft Speed Variability

In distance based metering, variability in aircraft speed leads to increased
variability in the time of arrival at fixes because the restriction is specified in terms of
distance separation. Figure 58 shows the effect of variability in speed on the delays
(actua arrival time minus ETA) when MIT is applied to aflow of traffic with constant
speed (across aircraft) and to aflow of traffic with variable speed (with an average value
the same as the constant speed of the other flow). The flows were ssmulated using
Poisson processes. It is evident as the figure shows that the variability in speed increases
the delays. Time based metering however excludes this variability, as the metering
assignstimes of arrival at the fixes independent of speed.

Figure 58. The effect of variability in speed on delays in distance based metering
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The benefit mechanisms of time based metering independence from speed
variability are presented in Figure 59.
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Figure 59. Benefit mechanism of independence of metering with speed variability

The independence of time based metering from aircraft speed variability increases
the metered demand and reduces the variability in the metered demand. As discussed in
Section 6.3.1 thisresultsin an increase in the use of available capacity. Applied to the

85



constraining resource this results in fewer idle slots and thus increased throughput.
Reduced variability in demand also results in reduced average delay directly, as discussed
in Section 6.3.1.

Modeling of Metering I ndependence from Speed Variability

The modeling of this mechanism within time based metering isimplicit to the
calculation of STAS, discussed in Section 5.1. It is assumed that controllers will use
appropriate advisories to meet the STA with a certain error. The effect of speed
variability is captured in the baseline model by using a random distance separation
between each pair of aircraft affected by aMIT restriction, and then using the actual
aircraft speed to calculate its actual arrival time at afix. The distance separation
distribution for each MIT restriction magnitude is determined by the calibration of the
MIT spacing baseline model as described in Section 4.1.2.

6.3.4. Freeze Horizon

The setting of afreeze horizon is a characteristic of time based metering, and refers to the
specification of atime period from the current time, for each meter fix, within which the
schedule isfixed for al aircraft (aircraft with STAs within that time period). The benefit
mechanisms of setting the freeze horizon are presented in Figure 60.
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Figure 60. Benefit mechanism of setting the freeze horizon.

The longer the freeze horizon the more time the controllers have to meet STASs.
However, the longer the freeze horizon the less time MCTMA hasto adjust STAs
optimally according to changing constraints. There is therefore a tradeoff, and the optimal
setting of the freeze horizon is a subject of research.

The freeze horizon ensures that the controllers working the aircraft scheduled at
the meter fixes have enough time to absorb the delay required to meet the STA. Adequate
time to meet the STA allows aircraft to be delivered to the fixes with high accuracy.
Consequently, the variability in the service rate of each meter fix, and thus the variability
in the metered demand for the next meter fix downstream is reduced.

A reduction in the variability in the service rate of aresource allows the specified
capacity of that resource to be increased closer to the theoretical capacity. The theoretical
capacity isalimit that should not be exceeded by the actual service rate in order to ensure
safe operations. Thisisillustrated in Figure 61, where areduction in the variability of
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service rate (oscillating line) means that the specified capacity (the solid straight line) can
be raised closer to the theoretical capacity (dashed straight line) without exceeding the
safety limit. Applied to the constraining resource, this resultsin an increase in system
throughput. System capacity increase can lead to areduction in average delay, if demand
isnot increased or allows the demand to be increased to take advantage of the increased
throughput. There is however a tradeoff between increased demand and reduced delay.
Thisisdiscussed in detail in Section 8.
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Figure 61. Effect of reduced variability in service rate

Reduced variability in service rate does also result in areduction in delay directly
however. Thisisillustrated in Figure 62. Variability can cause alow service rate
followed by a high service rate, averaging to an average service rate over the entire
period. If the demand were equal to this average service rate, those aircraft arriving when
the service rate was low would incur delays as depicted in the upper part of the figure. If,
however, the service rate were constant and equal to the average value throughout, none
of the arriving aircraft would incur significant delays, as depicted in the lower part of the
figure. The average delay is thus higher when the variability in service rateis high, even
if the overall throughput is maintained at the same level.
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Figure 62. Higher delay resulting from high variability in service rate

The freeze horizon reduces the variability in the metered demand. As discussed in
Section 6.3.1 thisresultsin an increase in the use of available capacity. Applied to the
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constraining resource this results in fewer idle slots and thus increased throughput.
Reduced variability in demand also results in reduced average delay directly, as discussed
in Section 6.3.1.

Modeling of Freeze Horizon

The error £in meeting the STA in Equation (8) in Section 5.1 is afunction of the
length of the freeze horizon.

€ = f"(freeze horizon) (20)

The freeze horizons have been set for each meter fix following the procedure
suggested by NASA’s McTMA researchers — namely, aligning the freeze horizons with
sector boundaries. The modeling of the freeze horizon is, therefore, implicit in the arrival
flow network. The sector boundary alignment procedure is motivated by controller
acceptability®. While it was intended to vary the freeze horizon as a parameter this
procedure does not allow much variation. Variations of the freeze horizon may still be
investigated in future research.

The error £in Equation (10) has been set based on consultation with NASA’s
MCcTMA researchers and based on previous TMA field research to be a normal
distribution centered around zero with a standard deviation of 90 seconds, as described in
Section 5.1. Thiserror was also varied in sensitivity analysis as described in Section 9.3.

6.4. Benefit Mechanisms of Delay Feedback and Capacity
Distribution

Delay feedback and capacity distribution are functions of MCTMA, and refer to
the propagation of delays upstream according to the constraints on the capacities of the
downstream airspace to absorb delay, and the generation of acceptance rate profiles
according to STAs. The mapping of the benefits of delay feedback and capacity
distribution is presented in Figure 63.

8 Controllers prefer to command the aircraft the advisory needed to meet the STA as close to the handoff as
possible, i.e. once the aircraft is under their control.
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Figure 63. Benefit mechanisms of delay feedback and capacity distribution

Each mechanism in the Figure 63 is discussed in detail in the following
subsections.

6.4.1. Redistribution of Delay to Higher Altitude

Because the function of delay feedback propagates delay upstream, and because
aircraft descend during the arrival process, delay feedback resultsin the redistribution of
delay to ahigher altitude. The benefit mechanisms associated with redistribution of
delaysis presented in Figure 64.

Redistribution
Delay feedback of delay to »| Reduced
higher altitude fuel burn
(fuel burn)

Figure 64. Benefit Mechanism of delay feedback: Redistribution of delay to a higher
altitude

The redistribution of delay to a higher altitude resultsin reduced fuel burn, as
aircraft burn more fuel at low altitude than high atitude.

Modeling of Redistribution of Delay to Higher Altitude

The reduction in fuel burn due to redistribution of delay to a higher atitudeis
modeled by calculating fuel burn resulting from delay, in each of the metering models.
Fuel burnisafunction of aircraft type, engine type, atitude and aircraft speed. For each
aircraft and engine combination, aircraft manufacturers provide fuel burn tables, from
which fuel burn can be calculated according to aircraft speed and atitude. Thus, in order
to calculate fuel burn according to how much delay is absorbed for each meter fix, the
following steps were followed:
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e Associate an atitude and Mach number for atypical small, medium and large aircraft
with each meter fix. The altitude and Mach number represent the atitude and Mach
number at which delay would be absorbed for that meter fix. This was assumed to be
the altitude and Mach number at the upstream meter fix.

e Using fuel burn model for the typical small, large, heavy and Boeing 757 aircraft,
estimate the fuel burn rate, or fuel flow (FF, in Ib/min) for each aircraft weight class,
at each meter fix. Fuel burn rates for typical small, large, heavy and Boeing 757
aircraft were obtained from NASA CTAS Engineering Group.

e For each aircraft passing through a meter fix specify its fuel burn rate according to its
weight class (small, large, heavy or Boeing 757 aircraft).

e Multiply the delay absorbed for each meter fix by the weighted average fuel burn rate
FF; for each aircraft, asillustrated in Figure 65 below. Thisyields the fuel burned
during the absorption of delay for each aircraft at each meter fix.

Delay,
Fuel Flow,

Delay,

A’_ Fuel Flow,
Meter fix, Delay,
Aﬂ Fuel Flow,
Meter fix,
A

Meter fixg
Figure 65. Fuel burn at meter fixes

6.4.2. Avoid Downstream Controller Overload

Delay feedback resultsin there being fewer requirements for delay absorption in
the downstream sectors, as all the delay above the threshold values in each sector, isfed
upstream. The delay threshold (delayability) is that amount of delay that can be absorbed
without holding, so holding is greatly reduced through McTMA. This reduces workload
on downstream controllers, and thus delay feedback avoids controller overload.
Workload may be increased as aresult for the upstream controllers; however the
upstream airspace tends to have less capacity constraints and |ess congestion while the
downstream airspace and resources such as the terminal area and the runways tend to be
the flow bottleneck. The benefit mechanisms associated with avoiding downstream
controller overload are presented in Figure 66.
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Figure 66. Benefit mechanisms of delay feedback: Avoiding downstream controller
overload

When controllers become overloaded they are less effective in controlling aircraft
and their service rate might drop as they miss slots because of being occupied by
maintaining separations and holding aircraft. A reduction in the service rate of the
constraining resource results in a decrease in throughput. Thus, by avoiding downstream
controller overload a decrease in service rate is avoided and average throughput is
increased. Similarly, by avoiding downstream controller overload fewer gaps are opened
in the arrival stream and the metered demand increases, leading to an increase in the
throughput.

When controllers become overloaded the accuracy with which aircraft can be
metered is aso reduced. Consequently, by avoiding downstream controller overload
MCcTMA enables reduced variability in the service rate of the resource where metering is
applied, aswell as areduction in the variability of the metered demand for the
downstream resources. As discussed in Section 6.3.4 such areduction in service rate
variability allows for an increase in the specified capacity closer to the theoretical limit of
capacity, which resultsin increased throughput if applied to the constraining resource.
Reductionsin the variability of the service rate, and of the metered demand, both result in
areduction in the average delay, directly, also as discussed in Sections 6.3.1 and 6.3.4.
Reduced variability in demand also resultsin an increase in the use of available capacity
as discussed in Sections 6.3.1. Applied to the constraining resource this results in fewer
idle slots and thus increased throughput.

Modeling of Avoidance of Downstream Controller Overload

The effect of controller overload is captured using the capacity model presented in
Section 3.1, where the throughput was shown to drop as the congestion and delay levels
become excessively high because of, among other factors, high controller workload.
Using McTMA'’s delay feedback mechanism, the congestion and delay levelswill be
maintained below the levels at which the throughput drops. In addition because of lower
workload it is expected that the capacity constraints imposed in MCTMA can be set closer
to the theoretical safety limit. Thisis discussed in more detail in Section 6.3.
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6.4.3. Avoid Gridlock Effect

Delay feedback resultsin there being less congestion in the downstream sectors,
and thus enables gridlock to be avoided. Gridlock refers to when no aircraft are able to
advance in the flow because of interdependence between streams (usualy arrival and
departure streams) each waiting for the other to advance at the same time. Gridlock rarely
happens in reality because the system responds before it is able to completely manifest.
The benefit mechanism associated with avoiding the gridlock effect is presented in Figure
67.
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gridlock effect in servicerate throughput

Delay feedback |—p

Figure 67. Benefit mechanism of delay feedback: Avoiding gridliock effect

Even though gridlock rarely materializes, as the system approaches gridlock the
service rate drops in an attempt to avert it. Thus, avoiding approaching the gridiock effect
results in avoiding decreasing the service rate and thus allowing for an increased system
throughput.

Modeling of Avoidance of the Gridlock Effect

The gridlock effect is aso be captured in the capacity model presented in Section
3.1, where the throughput is expected to drop as the congestion and delay levels become
excessively high because of, among other factors, approaching gridlock. Using
McTMA'’s delay feedback mechanism, the congestion and delay levels are maintained
below the levels at which the throughput drops.

6.4.4. Increased Flexibility resulting from Capacity Distribution

Capacity distribution and the use of the rate profiler to calculate acceptance rate
profiles according to STAs propagated from downstream allows for the specification of
new STAs according to local constraints, ETAS, and the acceptance rate profile. This
allows for greater flexibility in assigning aircraft to slots, as aircraft must meet local
constraints and the specified acceptance rate profile only, and not the sequencing
requirements propagated from downstream. The benefit mechanism associated with
increased flexibility resulting from capacity distribution is presented in Figure 68.
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Figure 68. Benefit mechanisms of capacity distribution: Increased flexibility

Increased flexibility in assigning aircraft to slots results in increased use of the
available dots, asthere are fewer constraints to satisfy in filling slots. This results directly
in increased throughput.
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Modeling of Increased Flexibility

The increased flexibility in assigning aircraft to slots is captured explicitly in the
implementation of capacity distribution in the McTMA model as described in Section
5.1

6.5. Benefit Mechanisms of Dynamic Metering

Dynamic metering is afunction of MCTMA and refers to the dynamic adjustment
of STAs. MCTMA regenerates STAs every 12 sec, up to the freeze horizon (a set distance
from the meter fix that typically equates 19 minutes) after which the STAs become fixed.
Thisisin contrast to current operations where a MIT restriction generally remains
unchanged for up to few hours, as detailed in Section 3.1.2. The benefit mechanisms of
dynamic metering are presented in Figure 69.
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Figure 69. Benefit mechanisms of dynamic metering

Dynamic metering includes the dynamic adjustment of metering according to
changing constraints, and dynamic balancing of arrival streams according to changing
relative demand. The benefit mechanisms associated with each of these characteristics are
presented on the following subsections.

6.5.1. Dynamic Adjustment of Metering According to Changing
Constraints

Dynamic adjustment of metering according to changing constraintsis a
characteristic of dynamic metering. Constraints do change, and current operations are not
well equipped to adjust the metering accordingly. Thisis because of lack of automation
and the slow system response to changes in the distance based MIT restrictions.
MCcTMA'’s dynamic metering however allows almost immediate changes in the metering
to accommodate any changing constraints. The benefit mechanisms associated with
dynamic adjustment of metering according to changing constraintsis presented in Figure
70.
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Figure 70. Benefit mechanism of dynamic metering: Dynamic adjustment of metering
according to changing constraints

When constraints become more restrictive, they must be accommodated for safety
reasons. Thus, a decrease in capacity does result in a corresponding increase in metering,
even in current operations. Because restrictions cannot be changed often and rapidly, the
flow is generally restricted according to the most severe level of the constraints expected.
This means that capacity islost in those periods where the constraints are not as severe.
Dynamic metering allows more immediate response to changes in capacity constraints.
Use of the available capacity of aresource, and particularly that of the constraining
resource, isthusincreased. This reduces the number of idle slotsin the stream, increasing
throughput.

Dynamic adjustment of metering according to changing constraints allows for
dynamic adjustment of the specified capacity, since the metering can respond, which is
currently not the case. Specified capacity could be changed dynamically according to
dynamic changes in the actual capacity, allowing close matching of the capacity to the
constraints. In the case of the runway, the capacity envelope could be utilized to a greater
extent, adjusting in MCTMA specified AARs according to the arrival and departure
schedules. Thiswould allow an increase in available capacity, which, if applicable to the
constraining resource, would allow for an increase in throughput.

Modeling of Dynamic Adjustment of Metering Accor ding to Changing Constraints

The dynamic adjustment of the metering according to changing constraintsis
modeled through matching variable acceptance rates. Acceptance rates vary over the day
as the reported capacity is changed due to changes in runway configuration or weather. In
each configuration the acceptance rate is also varied as a function of departure rate
according to the capacity envelopes described in Section 3.1.1. MCTMA metering is
applied over periods of 30 minutes or longer as detailed later in Section 7.2. On the other
hand, in the baseline model the MIT restrictions are maintained for a period on the order
of hours (at least 1 hour as observed from analyzing the facility restriction logs).

While STAs were not updated every 12 seconds, the dynamic nature of
MCcTMA'’ s time based metering was captured by updating the STAs between upstream
tiers and downstream tiers adjusting for accumulated errors in meeting the upstream
STAs. The error in meeting the STA was added to each STA, at each tier as described in
Section 5.1. However, because MCTMA updates ETAs and recalculates STAs every tier,
itisableto adjust for the errorsincurred in upstream tiers. This was modeled by sampling
an error from the error distribution, adding it to the STA of the tier in which the error was
incurred, and then subtracting it from the amount of delay to be absorbed in thetiers
downstream. The change in the amount of delay to be absorbed in each downstream tier
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was limited in that the resulting adjusted amount of delay to be absorbed must be greater
than zero, and less than the delayability of thetier.

6.5.2. Dynamic Balancing of Arrival Streams

Dynamic balancing of arrival streams according to changing relative demand isa
characteristic of dynamic metering. This refersto the accurate balancing of flow from the
different streams as the demand on each stream changes. Even though current operations
attempt to place lower restrictions on the heavy demand flow when applying MIT
restrictions, they are not dynamic enough to match changing relative demand. The benefit
mechanisms associated with dynamic balancing of arrival streams are presented in Figure
71.
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Figure 71. Benefit mechanisms of dynamic metering: Dynamic balancing of arrival
streams

Because MCTMA is able to dynamically balance between flows as demand
changes, the metered demand isincreased and its variability isreduced. As discussed in
Section 6.3.1 thisresultsin an increase in the use of available capacity. Applied to the
constraining resource this results in fewer idle slots and thus increased throughput.
Reduced variability in demand also results in reduced average delay directly, as discussed
in Section 6.3.1.

Modeling of Dynamic Balancing of Arrival Streams

The dynamic balancing of arrival streamsis modeled implicitly through matching
variable arrival rates from different streams and through the coordination between
multiple streams, with all aircraft on all streams accounted for in the calculation of STAs.
In the baseline model, heavy demand streams are assigned lower MIT restrictions as
described in Section 4.1.1.

6.6. Benefit Mechanisms of Tiered Metering
Tiered metering isafunction of MCTMA, and refers to metering at a number of

meter fixes on each aircraft stream, extending a number of tiers upstream from the
destination airport. The benefit mechanisms of tiered metering are presented in Figure 72.
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Figure 72. Benefit mechanisms of tiered metering
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Each mechanism in Figure 72 is discussed in detail on the following subsections.

Tiered metering allows for the absorption of the delay to be specified over a

number of airspaces, and not restricted to the airspace in or near the TRACON boundary.
The benefit mechanism associated with the absorption of delay over multiple airspacesis
presented in Figure 73.
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Figure 73. Benefit mechanism of tiered metering: Delay absorption over multiple

airspaces

The absorption of delay over multiple airspaces enables the McTMA function of

delay feedback, as delay can be fed back through multiple meter fixes, ensuring that the
delay threshold within each airspace is not violated. The benefits and modeling of delay
feedback are discussed in detail in Section 6.4.

6.6.2. Inclusion of Aircraft Earlier Upstream

Multiple tiers of metering alow aircraft to be included in the calculation of ETAS

and STAs earlier upstream, and allows more aircraft to be included in the metering

process. The benefit mechanisms associated with thisis presented in Figure 74.

96



Improved

demand
visualization
Tiered | || acincluded .| Increasein Reduced

metering earlier upstream "| control authority fuel burn
(fuel burn)

\ 4

Reduced variability
in metered demand

()

Reduced
aver age delay

(®)

Accurate balancing of flow
from different streams

. Increased use of
Increasein ; ; Increased
available capacity —»] th hout
metered demand (fewer idle siots) rougnpu

®
Figure 74. Benefit mechanism of tiered metering: Inclusion of aircraft earlier upstream

The inclusion of more aircraft upstream and the inclusion of each aircraft earlier
in the arrival process improves visualization of demand. Demand visuaization isa
function of MCTMA, and is discussed in detail in Section 6.7. This discussion includes a
discussion on the function’ s benefits mechanisms and modeling of these mechanisms.

Inclusion of aircraft earlier upstream in the arrival process also increases the
control authority which MCTMA has on the aircraft. Thisis because ETAs and STAs can
be generated earlier. It is hypothesized that increased control authority may reduce fuel
burn, as the longer an aircraft is under MCTMA control authority, the more distance the
controller has to absorb the delay that ultimately needs to be absorbed. The delay can thus
not only be absorbed at higher altitude, as discussed in Section 6.4.1, but also through
more fuel efficient delay absorption strategies, such as speed reduction as opposed to
vectoring or holding. This benefit has yet to be confirmed however and is thus currently
not to be modeled.

Theinclusion of aircraft earlier upstream in the arrival process also allows for
more accurate balancing of the flow from different streams. This, along with increased
control authority, increases the metered demand and reduces its variability. As discussed
in Section 6.3.1 thisresultsin an increase in the use of available capacity. Applied to the
constraining resource this results in fewer idle slots and thus increased throughput.
Reduced variability in demand also results in reduced average delay directly, as discussed
in Section 6.3.1.

Modeling of Inclusion of Aircraft Earlier Upstream

The modeling of tiered metering, and the inclusion of aircraft earlier upstreamis
implicit to the modeling of MCTMA and time based metering described in Section 5.1,
and ensured by the identification of the meter fixesin Appendix A.

6.6.3. Closing Gaps from Upstream

Tiered metering also allows for gapsin the flow from upstream to be closed by

rescheduling a new set of STAs at the next meter fix downstream. Thus, if aflight is
unable to meet its STA, the resulting gap can be closed at the next meter fix. Without
tiered metering, and thus only one meter fix, any slots scheduled at the meter fix, but
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ultimately missed, cannot be recovered. The benefit mechanism associated with thisis
presented in Figure 75.
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Figure 75. Benefit mechanism of tired metering: Closing gaps from upstream

Closing of gapsin the flow from upstream increases metered demand. As
discussed in Section 6.3.1 this results in an increase in the use of available capacity.
Applied to the constraining resource this results in fewer idle slots and thus increased
throughput.

Modeling of Closing Gaps from Upstream

The modeling of the closing of the gaps propagating down from upstream is
implicit to the modeling of time based metering and the generation of STAs according to
minimum delay at each meter fix. It is aso captured in the adjustment of STAS between
tiers as described in modeling dynamic metering.

6.6.4. More Accurate ETAs

Tiered metering allows for more accurate ETAS, as the distance between the
system outmost boundary and the destination runway is divided into smaller tiers. The
smaller tiers allow more accurate prediction of ETAs for each tier and more feasible
STAsto be computed based on the more accurate ETAS. The benefit mechanism
associated with thisis presented in Figure 76.
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Figure 76. Benefit mechanism of tired metering: More accurate ETAS

More accurate ETASs ultimately result in an increase in the metered demand and a
reduction in its variability as STASs specified according to the more accurate ETAs are
more feasible, and can thus be met more accurately. As discussed in Section 6.3.1 this
resultsin an increase in the use of available capacity. Applied to the constraining
resource thisresults in fewer idle sots and thus increased throughput. Reduced variability
in demand also resultsin reduced average delay directly, as discussed in Section 6.3.1.

Modeling of More Accurate ETAS

The modeling of more accurate ETAS resulting from tiered metering isimplicit in
modeling unimpeded transition times for each tier as opposed to asingle transition time
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for the whole system, as described in Section 3.2, thus reducing the variability in ETAS.
This variability is further reduced by taking into account flight distance, wind and aircraft
class.

6.7. Benefit Mechanisms of Demand Visualization

Demand visualization is afunction of MCTMA, and refers to the visualization of
demand through loadgraphs and timelines, showing demand according to ETAs and
STAs, in addition to displaying the capacity and expected delay. The benefit mechanisms
of demand visualization are presented in Figure 77.
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Figure 77. Benefit mechanisms of demand visualization

Because each facility is able to visualize demand from a number of other facilities
amore global view is created and coordination between the facilitiesisimproved. The
benefits of multiple facility coordination are discussed in detail in Section 6.8.

Demand visualization includes the following characteristics:

e ‘What if’ functionality.

e Decision making regarding starting and stopping metering, and shutting off and
resuming flow.

e Switching flights between arrival streams.

The benefit mechanisms associated with each of these characteristics are
presented on the following subsections.

6.7.1. What-if Functionality

The ‘what-if’ functionality of MCTMA refersto the potential use of MCTMA to
test MIT restrictions, before afinal MIT restriction isimplemented. By inputting the MIT
restriction to be tested, MCTMA provides an indication of resulting delay. This use of
MCcTMA isnot currently planned but would represent the potential benefits during a
transition phase between current operations and time based metering operations. In this
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transition phase only the visualization tools of MCTMA would be deployed and made
available to traffic managers. Metering would thus still be according to MIT.

It was intended to analyze the benefits of demand visualization in this transition
deployment phase through modeling aMcTMA what-if capability. Modeling this
capability would also provide an estimate of the potential benefits if such afunction were
added to MCTMA at alater time. However, due to time constraints and because such a
transition phase is no longer planned, NASA McTMA researchers advised not to perform
thisanalysisin favor of other more relevant extensions. The benefit mechanisms derived
are kept in this description for completeness and future reference.

The benefit mechanism of the ‘what if’ functionality is presented in Figure 78.
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(specific to MIT spacing) (@

Figure 78. Benefit mechanism of ‘what-if’ functionality

By comparing the resulting delay from a number of different restrictions,
MCcTMA can enable the optima MIT restriction to be applied. Note that the MIT
restrictions must still be specified in increments of 5 MIT. Optimization of the MIT
restrictions would apply arate that better matches the constraints, and hence increases the
use of the available capacity by reducing the number of idle slots. Applied to the
constrained resource, thiswill lead to increased throughput.

Modeling of ‘What if’ Functionality

The ‘what if’ functionality of MCTMA was not modeled in this benefit
assessment, but may be modeled in the future through the specification of optimal MIT
restrictions. This requires the comparison of the results of a number of different MIT
restrictions. Given the demand and other constraints, the delay resulting from a number
of different MIT restrictions surrounding the originally specified MIT restriction would
thus be cal culated and compared. The restriction resulting in the lowest delay would then
be selected for application.

6.7.2. Decisions Regarding Starting and Stopping Flows and Metering

Because demand visualization enables more accurate demand in the future to be
seen by traffic managers, decision making on when to start and stop metering, and
decision making on when to shut-off flow and when to resume flow after a shut-off, can
be improved. The benefit mechanisms of decision making regarding the starting and
stopping of flows and metering is presented in Figure 79.
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Figure 79. Benefit mechanism of decision making regarding starting and stopping flows
and metering

Demand visualization will allow for better timed starting and stopping of
metering. Avoidance of starting metering too early or stopping too late will result in an
increase in the use of the capacity of the resource, as the resource’ s capacity will be
utilized for aslong asit is available. Applied to the constraining resource, this will result
in an increase in throughput.

Avoiding stopping metering too early or starting too late will result in less
requirement for holding (or other means of managing the excess demand), which results
in reduced average delays.

Modeling of Decision Making Regarding Starting and Stopping Flows and Metering

Only starting and stopping metering, both time based and distance based, were
modeled. Based on analysis of facility logs shut-off is employed in extreme conditions in
transition to more restrictive flow management programs such as a ground delay
program. Most of the analysis was conducted on normal conditions and moderately
restrictive conditions when only MIT was applied. Extension to more severe and
restrictive conditions was intended but time did not permit and may be considered for
future extension.

Based on consultation with NASA’s MCTMA researchers, time based metering
was started when demand was predicted to exceed the reported capacity of the runway
configuration as detailed in Section 7.2. Predicted demand was modeled using the ETAS
as specified in Section 3.2 and an algorithm was devel oped to detect when predicted
demand exceeds capacity. Also based on consultation with NASA’s MCTMA researchers
time based metering was stopped when the delay dropped to zero. A minimum duration
of 30 minutes was applied. In the baseline model distance based MIT restrictions were
applied during their actual time of application according to the facilities restriction logs.
Also based on consultation with NASA’s MCTMA researchers a scenario was run where
time based metering replaced MIT during the same periods when MIT was applied, as
detailed in Section 7.2 also.

6.7.3. Switching Flights between Arrival Streams

MCcTMA enables visualization of demand on al arrival streams, and thus,
decisions on switching flights from one arrival stream to another can be made more
effectively. This should improve the effectiveness of offloading aircraft from ZOB
heading to ZNY, through ZBW or ZDC as currently practiced. It should also encourage
more rerouting through other facilities which is currently avoided because of difficulty in
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coordination. Thisis particularly useful at times when certain gates are affected by bad
weather and other gates are not. The benefit mechanism of switching flights between
arrival streamsis presented in Figure 80.
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Figure 80. Benefit mechanism of switching flights between arrival streams

Switching flights between arrival streams results in more accurate balancing of
flow from different streams, which results in increased metered demand and reduction in
metered demand variability. As discussed in Section 6.3.1 thisresultsin an increase in
the use of available capacity. Applied to the constraining resource this results in fewer
idle slots and thus increased throughput. Reduced variability in demand also resultsin
reduced average delay directly, as discussed in Section 6.3.1. Switching flights between
arrival streams also resultsin better and more optimal offloading which resultsin less
delay as shorter reroutes are used.

Modeling of Switching Flights Between Arrival Streams

Switching flights between streams was not model ed based on feedback from
NASA’s MCTMA researchers that rerouting of flights between arrival gatesis not
currently considered asa McTMA function. The extension to model and analyze such a
function may be considered in future extension work. Particularly, since traffic managers
indicated during the site visits that it would be beneficial if the tool advised rerouting
options when certain gates are affected by severe weather, and the facility logs contained
indication that airlines or pilots get dismayed because of offloading through longer routes
resulting in more fuel burn.

6.8. Benefit Mechanisms of Multiple Facility Coordination

Multiple facility coordination is afunction of MCTMA, and refersto the
coordination between all facilitiesinvolved in the arrival process that is enabled by
McTMA. The benefit mechanisms of multiple facility coordination are presented in
Figure 81. Multiple facility coordination includes coordination between the TRACON
and the associated ARTCCs, coordination between upstream and downstream facilities,
coordination between facilities at the same tier, and coordination with facilities outside
the McTMA system such as the Command Center (ATCSCC) and other ARTCCs. The
benefit mechanisms of each of these features are presented in the following subsections.
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Figure 81. Benefit mechanisms of multiple facility coordination
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6.8.1. Coordination between TRACON and Associated ARTCCs

The benefit mechanisms of coordination between the TRACON and associated
ARTCCs, which in thiscase are ZNY, ZBW, ZOB and ZDC, are presented in Figure 82.

Time based
metering

Internal departure

M ultiple Coordination between scheduling
facility — > TRACON and
coor dination associated ARTCCs Runway
H assignment
TEC

Figure 82. Benefit mechanisms of coordination between TRACON and associated

ARTCCs

A number of functions of MCTMA are enabled by the coordination between the
TRACON and ARTCCsinvolved in the arrival process. Particularly thisincludes time
based metering (including delay feedback and capacity distribution), internal departure
scheduling, runway assignment; and tower en-route control. The benefits and modeling
of time based metering is discussed in detail in Section 5.1 above, while the benefits of
the runway assignment and internal departure scheduling functions are discussed in detail
in Sections 6.9 and 6.10 below. McTMA gets information about TEC through ETMS
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because they are not tracked by the Host computer. To accommodate for these aircraft,
the acceptance rates and other constraints are adjusted according to the number of TEC
aircraft expected.

Modeling of Coordination between TRACON and Associated ARTCCs

Coordination between the TRACON and Centersis likely to improve operations
for each of the functions described. Because these functions are enabled by the
coordination function, however, the modeling of the benefits of coordination isimplicit to
the modeling of the functions.

Based on consultation with NASA’s MCTMA researchers, in the McTMA model
TEC arrivals are assigned ETAs according to their actual time of arrival at the runway.
Then they are delayed if needed by time based metering. In this manner TEC trafficis
considered as part of the constraint reserving landing slots. Thisis an approximation of
the effect of TEC traffic since the MCTMA approach to them is a subject of research.

6.8.2. Coordination between Upstream and Downstream Facilities

The benefit mechanism of coordination between upstream and downstream
facilitiesis presented in Figure 83.
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Figure 83. Benefit mechanism of coordination between upstream and downstream
facilities

Coordination between upstream and downstream facilities enables tiered
metering. Without this coordination metering over a number of tiers would not be
possible.

Modeling of Coordination between Upstream and Downstream Facilities

In the modeling of tiered metering, coordination is thus implicit.

6.8.3. Coordination between Facilities at the Same Tier

The benefit mechanism of coordination between facilities at the sametier is
presented in Figure 84.
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Figure 84. Benefit mechanism of coordination between facilities at the same tier
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Coordination between facilities at the same tier enables coordination of the
scheduling between different facilities. This results particularly in more accurate
balancing of the flow from different streams and switching of flights between arrival
streams, which increase the metered demand and reduce its variability. As discussed in
Section 6.3.1 thisresultsin an increase in the use of available capacity. Applied to the
constraining resource this results in fewer idle slots and thus increased throughput.
Reduced variability in demand also results in reduced average delay directly, as discussed
in Section 6.3.1.

Modeling of Coordination between Facilitiesat the Same Tier

Coordinated scheduling is again implicit to the generation of the schedule of
STAs according to the demand on all the arrival streams, and to the balancing of flows
from different streams where delay is propagated back through merging streams, as
described in Section 5.1. Switching of flights between stream is not modeled as described
under demand visualization.

6.8.4. Coordination with Facilities outside the System

MCcTMA'stiered time based metering may have an impact on the NAS outside
the MCTMA system. Thisimpact materializes through coordination and interaction
between the MCTMA facilities and facilities outside the MCTMA system. For example,
through interaction with the Command Center, traffic flow management programs such
as the Ground Delay Program (GDP) may be reduced in number and severity because of
the application of MCTMA. Through interaction and coordination with ARTCCs
upstream of the MCTMA system MIT restrictions and corresponding APREQ restrictions
may be reduced as well because of the application of MCTMA. These interactions result
in the benefit mechanisms represented in Figure 85.
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Figure 85. Benefit mechanism of coordination with facilities outside the system

Reduction in the GDP and other restrictions on traffic outside the MCTMA system
increases the demand on the MCTMA system. Thisis because the arrival traffic enters the
MCcTMA system less restricted by ground delay and MIT. The increase in demand for the
MCcTMA system takes advantage of the increased capacity resulting from time based
metering and reduced downstream controller workload. Thisresultsin an increase in the
system throughpui.

M odeling of Coordination with Facilities outsdethe McTMA System

Based on consultation with NASA’s MCTMA researchers it was decided,
conservatively and due to time and resource constraints, not to investigate and analyze
the impact of MCTMA on the other restriction programs, such as GDP, applied in the
NAS outside of the MCTMA system. This could be done for example by increasing the
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demand for the MCTMA system to take advantage of the increased capacity due to time
based metering. Therefore, the arrival and departure demand for the MCTMA system was
kept unchanged from the current actual level of traffic, as detailed in Section 7.2.
However, the benefits assessment was conducted in periods of time when neither GDP
for the analyzed airports nor MIT restrictions on the boundary of the system, were

applied.

6.9. Benefit Mechanisms of Runway Assignment

Runway assignment is afunction of MCTMA, and refers to the assignment of
runways to arriving flightsin such asway as to reduce delay in the entire system. This
function is not currently implemented for MCTMA. Therefore, its analysis was not
conducted. The benefit mechanisms of runway assignment are presented in Figure 86 for
completeness and to support future extension.
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Figure 86. Benefit mechanisms of runway assignment

The runway assignment function of MCTMA has two primary characteristics.
Runways are assigned to minimize delay, and the correct number and mix of aircraft are
fed into the TRACON according to specific runway acceptance rates. These
characteristics are discussed in detail in the following subsections.

6.9.1. Landing Aircraft on Optimal Runways to Minimize Delay

The benefit mechanism of landing aircraft on the optimal runways to minimize
delay is presented in Figure 87.
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Figure 87. Benefit mechanism of landing aircraft on the optimal runways to minimize
delay

Minimization of delay in runway assignment results directly in an increase in
throughput as landings are packed closer together closing gaps. However, the landing of
arrivals on the optimal runways also results in less switching of the runway assignment in
the TRACON, as the runway that is assigned is optimal. Less switching of the runway
assignment results in improved approach controller operations, and controller overload is
thus avoided. This means that the reduction in service rate associated with controller
overload, and the corresponding reduction in throughput, is avoided. Improved controller
performance aso means that aircraft are served more consistently, and the variability in
service rate is thus reduced. As discussed in Section 6.3.4 this leads to a direct reduction
in average delay, and also allows for an increase in the specified capacity closer to the
theoretical limit, which would increase throughput.

Modeling of Landing Aircraft on Optimal Runwaysto Minimize Delay

The assignment of runways is not modeled in this benefits assessment, but may be
modeled in the future explicitly according to the runway assignment algorithm in [4].
This algorithm assigns a runway to minimize the delay of all the aircraft entering the
TRACON.

Aircraft should initially be assigned runways according to their type, their arrival
fix, the airport runway configuration, and the acceptance rates on each runway. If runway
configuration should change, al aircraft in the air may be re-assigned default runways
according to the new configuration. If the acceptance rate on any runway should change,
the aircraft flying between the first and second tiers of meter fixes (i.e. the next fix that
they will crossistheir arrival fix) may be rescheduled.

6.9.2. Feeding correct number and mix of Aircraft into TRACON

The benefit mechanism of feeding the correct number and mix of aircraft into the
TRACON is presented in Figure 88.
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Figure 88. Benefit mechanism of feeding the correct number and mix of aircraft into the
TRACON

Runway assignment results in the correct number of aircraft and the correct mix
of aircraft, with respect to jets and turboprops, being fed into the TRACON in order to
maintain pressure on the runways. This results in maximized runway utilization, which, if
the runway is the constraining resource, results in increased throughput. In addition, in
current operations the lack of information about runway assignment prevents the traffic
managers from favoring aircraft heading towards non-restricted runways. With the
McTMA runway assignment and the knowledge about which runway the aircraft is
landing on, aircraft not affected by arestriction can be alowed to flow freely increasing
utilization of the runways.

Modeling of Feeding Correct number and mix of Aircraft into TRACON

As detailed above, in Section 6.9.1, runway assignment may be explicitly
modeled according to the runway assignment algorithm in [4].

6.10. Benefit Mechanisms of Internal Departure Scheduling

The benefit mechanisms of MCTMA internal departures release are presented in
Figure 89.
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Figure 89. Benefits mechanism of internal departure scheduling

The scheduling of internal departuresin McTMA results in the specification of
internal departure release times that accurately match gapsin the arrival stream. This
increases the metered demand and the use of the capacity of the constraining resource, as
big enough idle gaps can be filled by internal departures. Thisresultsin fewer idle dots
and, applied to the constraining resource, resultsin an increase in throughput. The release
of internal departures that match gapsin the arrival stream accurately also resultsin a
more uniform stream, because of the fewer idle gaps. The variability in the meter demand
isthus reduced. As discussed in Section 6.3.1 this also results in an increase in the use of
available capacity, which as discussed above resultsin increased throughput. Reduced
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variability in demand also results in reduced average delay directly, asdiscussed in
Section 6.3.1.

In addition better scheduling of internal departure release time optimizes the
tradeoff between absorbing delay on the ground versusin the air. Thisresultsin reduced
fuel burn whenever it is beneficia to absorb more delay on the ground.

Modeling of Internal Departure Scheduling

Asdescribed in Section 3.2, internal departures enter the system at their actual
takeoff time (measured by the first track) rather than at their scheduled departure time.
Internal departures were then modeled in asimilar fashion to the aircraft arriving en-
route. STAs were assigned to the internal departures based on ETAs. The ETAs are
calculated based on the average unimpeded transition time to arrive at the first meter fix
after departure, and then subsequent meter fixes, as described in Section 3.2. When delay
feedback is applied internal departures may absorb a portion of their delay on the ground,
delaying their takeoff departure time. Internal departures therefore, were not assessed
separately from the rest of the arrival flow and the benefits of including them in the
schedule are implicit to the time based metering benefits.

For simplicity and conservatively, modeling internal departuresin this benefit
assessment does not capture the impact of MCTMA on the original takeoff time, which
may have aready included adelay. As discussed in Section 6.8.4, applying MCTMA may
have an impact on the original takeoff time because |ess upstream restrictions may be
needed due to the increased capacity by time based metering. Analyzing this impact
would require using scheduled rather than actual departure times and estimates of the
time spent on the ground, and dealing with the inaccuracies in these estimates, which are
still a subject of research for MCTMA as explained in Section 5.6. Due to time and
resource limitations, it was decided not to analyze the possible change in the original
takeoff time and to possibly addressit in future research.
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7. Estimated McTMA Technical Performance
Benefits

In this section the technical benefits of MCTMA are outlined along with the
details of the associated data analysis. First the data used in the analysis, the assumptions
made about key simulation parameters, and the method by which daily benefits were
extrapolated to yearly benefits, are described. Then a number of performance metrics are
presented, namely: delay savings, throughput increase, fuel burn savings, and metering
duration. The daily benefits shown are an average of the results for the fifteen days that
were analyzed in the study. These daily benefits were then extrapolated to yearly
benefits. Y early economic benefits were identified accordingly, as detailed in Section 8.

7.1. Data Analyzed

Processed Host and ETM S data were provided by NASA for the facilities of
interest (ANY, ZOB, ZBW and ZDC) for atotal of 9 daysin September 2002 (the 8", 9",
10", 12" 13" 14™ 16™ 17" and 19") and 30 daysin November 2003 (the 1% to 30™).
The Host datawere in the form of ¢m_sim files, and the ETMS data were in the form of
orig and event _list files. Wind RUC data were also provided by NASA for the same
periods. A Matlab suite was also provided by NASA for conversion of the cm_sim files
into aform that could be read by Matlab.

Fifteen days were analyzed, all from the November 2003 data set. The days
analyzed were November 8", 9™ 11" 12" 14™ 19" 20" and 22™ through to 29™. The
days were chosen according to data completeness and represented a random and wide
range of metering conditions (demand exceeding capacity).

7.2. Simulation Parameters and Assumptions

A key factor in estimating MCTMA’s benefits is the assumptions made about how
MCcTMA will be used in operation. Certain simulation parameters, representing the
modeled benefit mechanisms presented in Section 6, were set according to these
assumptions, as detailed below. The assumptions were made according to consultation
with NASA’s McTMA researchers based on their experience with the tool and in the
field.

Duration of Metering

In operation MCTMA time based metering is expected to be implemented when
demand exceeds runway capacity. The following assumptions are made for deciding
when to start and stop metering and which aircraft to meter during these periods:

1. McTMA metering will be implemented when demand exceeds the reported airport
capacity, identified in 15 minute windows, as displayed by the Flight Schedule Monitor
(FSM). Even though McTMA is not expected to apply the reported capacity of the airport
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asaconstraint thisis the capacity that TMCs are likely to use to identify when demand is
high enough to require metering.

. According to NASA’s MCTMA researchers MCTMA may be turned on in operation
about 90 minutes earlier than the time when demand is estimated to exceed the reported
capacity at the runway (to capture aircraft as they enter the system and to warm up with a
lead period without metering in effect). However, aircraft will not be metered (advised to
meet their assigned STAS) until after demand exceeds capacity.

. Asin operation, the start of metering will be identified by a specific aircraft (controllers
will decide from which aircraft in the flow to start metering). This aircraft is selected as
thefirst aircraft after demand exceeds capacity for which airport arrival delay is greater
than or equal to 2 minutes. The 2 minute threshold was suggested by MCTMA
researchers and represents an estimate of the amount of delay that can be absorbed in the
TRACON. Thus, in the simulation of MCTMA delay savings are not counted for aircraft
arriving during the lead time until delay under baseline operations reaches 2 minutes.

. The end time of the MCTMA metering period is decided by the end of the queue once no
more delay is needed (STA = ETA). However, the end of the metering period should be
maintained for sufficient time. Thus, if a new queue starts less than 30 minutes after the
end of the previous queue, it is assumed that MCTMA is not stopped for such short [ull
periods in between queues. During these small [ull periods delay savings are counted
since MCTMA s on, due to the reasons explained in 5 below.

. From thefirst aircraft in the metering period on al delay savings will be counted until the

end of the metering period. Delay savings will be counted even for aircraft delayed due to
causes other than the queue (for example, aircraft with STA = ETA because they follow a
short lull in the demand within the metering period, but are delayed in the baseline for
other reasons). Thisis because the McTMA researchers believe that the controllers will
actively advise all aircraft during the metering period to meet their STAS, in order to
avoid inefficiency. Such inefficiency may be caused, for example, by uncertaintiesin the
system (such asinternal departures not accounted for in the demand schedule). Not
speeding up aircraft behind alull and leading small queues may contribute to the
inefficiency by losing arrival slots that may be used by internal departures not well
predicted in advance. Controllers are aware of this and will meter all aircraft in the
metering period.’

. Demand is measured over 15 minute periods (because the resolution in the capacity
measurement was 15 minutes based on the ASPM database).

. Departures, in terms of departure rate from the airport, are not taken into account in the
decision of when to apply MCTMA. Internal departures arriving at the airport are taken
into account in the decision of when to apply MCTMA, as they add to the arrival demand.
Their ETAs are, however, based on their actual departure times, and not scheduled or

estimated departure time as may be the case in MCTMA operations.

® Because the baseline model excludes sources of delay other than metering situations (demand exceeding
capacity), aircraft that are not delayed by MCTMA' s time based metering are unlikely to be delayed by the
baseline' s distance based metering. Therefore, it was observed that the difference in the MCTMA delay
savings was insignificant whether such aircraft in lull metering periods were assumed to be metered or not.
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10.

11.

It isassumed that only aircraft metered at the first meter fix are metered at upstream tiers.
These aircraft are metered from the time they enter the system. Other aircraft that are
within the system when metering starts but not impacted by the queue at the runway are
not metered. The assumption isthat MCTMA will only be used to meter congestion at the
runway and will not be used to meter the local congestion in the upstream tiers.

McTMA may be applied in operation in conjunction with GDPs. However, because the
effect of MCTMA operations on GDPs s not analyzed, periods during which GDPs were
in place are excluded from the analysis.

In MCTMA operation flights are unlikely to be metered if the duration of the metering
period is very short. The minimum duration of a metering period was chosen as 30
minutes. Metering was thus not applied in the simulation of MCTMA for metering period
shorter than this.

An aternative scenario that was analyzed for the start and stop times of time based
metering isthat MCTMA will be implemented during the same times when MIT was
implemented in actual operations. In this scenario the assumption is that MCTMA is used
merely as areplacement for MIT, which is a conservative assumption. In this scenario the
start and end times of MCTMA are known. The results for this scenario are presented in
Section 9.5 in the sensitivity analysis. In this scenario the times when MIT was applied at
the boundary of the system and not propagated from the runway (or TRACON) were
excluded. Thisis because these restrictions are assumed to be due to local constraints
while McTMA deals with runway and TRACON constraints.

Capacity parameters - Airport Acceptance Rates (AARS)

MCcTMA generates STAs based on satisfying an arrival acceptance rate constraint.

The arrival capacity was modeled as a function of the departure rate. It was assumed that
in each 15 minute period the number of departuresis equal to the actua number of
aircraft that took off during this period. The arrival rate constraint applied, given this
number of departures, was read off the capacity envelopes relating arrival and departure
rates described in Section 3.1.1.

It was assumed that MCTMA will be limited by runway safety requirements and

local operational constraints such as gridlock and controller workload. The capacities
imposed on the baseline TRACON model (the capacity envelope percentiles that resulted
in the best baseline model calibration as described in Section 4) represent an conservative
estimate of thislimit, as they represent what capacity is operated under current
procedures. MCTMA is, however, expected to allow an increase in this capacity due to
increased utilization of the available maximum safe throughput limit, as described in
Section 6.2. A range of benefits were thus calculated by applying arange of capacities
above those that calibrated the baseline model, thus modeling benefits due to an increase
in capacity constraints or utilization under MCTMA operations. The upper limit of this
range of capacities was defined by the maximum safe throughput limit at each airport,
and represents what is achievable using MCTMA. It does not necessarily represent what
controllers will achieve in practice. Thiswill lie somewhere between the current capacity
at which the baseline calibrated and the maximum safety limit.
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It was assumed that the 99" percentile of the capacity envelopes calculated per
half hour (as described in Section 3.1.1) represent the maximum safe throughput limit for
each runway configuration. This maximum is determined by the number of runways, the
runway configuration and the wake vortex separation requirement. (The 99" percentileis
a conservative choice because the 100™ percentile may include possible violations of the
safety requirements due to controller human error. It is also conservative because it
averages the throughput data available in 15 minute intervals, reducing the binning error.)
It was assumed that this maximum safety limit will not be increased due to the
application of MCTMA'’ s time based metering (since McTMA will not impact the
runways and wake vortex separations).

Because there is an error in meeting STAS, however, the maximum capacity
constraint applied to MCTMA must be less than this maximum safe throughput limit. The
simulated throughput per 15 minutes, after metering and including the error in meeting
STAs, was thus calculated at each airport for arange of capacity constraints (from the
percentile of the capacity envelopes that calibrated the baseline TRACON model, to the
98™ percentile of the capacity envelopes calculated per quarter hour). Any applied
capacity constraint for which the maximum safety constraint (99" percentile of the
capacity envelopes calculated per half hour) was not violated by the arrival throughput
any more than in actual operations (calculated from actual landing times) was considered
to meet the safety requirements. The throughput was permitted to violate the saf ety
constraint to the same extent as actual operations because the 99™ percentile of the
capacity envelopes calculated per half hour is only an estimate of the safety constraint,
and may be conservative in certain cases. It would also be allowing the same level of
safety as currently practiced. The highest percentiles of the capacity envelopes that met
this criterion are presented in Table 16. The percentage of time (of periods when demand
exceeded reported capacity) during which the safety constraints under MCTMA and
under actual operations were violated are also presented, rounded to the nearest 5 %.

Table 16. Maximum percentile of capacity envelopes calculated per quarter hour that
does not violate safety limit any more than under actual operations.

H th . . .
Percentilecapeny % time 99 percentile (per 30. min) violated
. (per 15 min) (When Demand > CapaC|tyreported)
Airport i [%]
applied to MCTMA

[%] Actual Throughput McTMA Throughput
PHL 96% 0% 0%
LGA 95% 10 % 10 %
EWR 95% 0% 0%
JFK 97% 30 % 25 %
TEB 98% 25 % 15 %

Itisclear from Table 16 that the safety constraint under actual operationsis
significantly violated at LGA, JFK and TEB. This suggests that the 99" percentile of the
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capacity envelopes calculated per half hour is a conservative estimate of the maximum
safe throughput limit at these airports. Thisis not, however, the case at PHL and EWR.
The percentiles of the capacity envelopes applied to MCTMA in Table 16 do not allow
the throughput under MCTMA to violate this limit any more than under actual operations,
though, and thus represent a good estimate of the maximum safe capacity limit at each
airport, achievable with MCTMA.

The range of capacities applied at each airport, as percentiles of the capacity
envelopes are presented in Table 17 below. In each case the lower limit represents the
capacity at which the baseline TRACON delay model calibrated, and the upper limit
represents the maximum safe capacity limit presented in Table 16.

Table 17. Range of capacities applied to MCTMA model

Lower Capacity Limit Upper Capacity Limit
Airport (Percentile of Capacity Envelope at (Percentile of Capacity Envelope
which Baseline TRACON Delay representing maximum safe
Model calibrated) capacity limit)
PHL 91° 96"
LGA ga" 95"
EWR ga" 95"
JFK 95" g7"
TEB 96" og™

The upper capacity limit represents what is achievable under MCTMA, and is thus
used in the nominal case in the results presented in the next sections. Economic results
are presented for both limits, however, in Section 8, and benefits for each percentile
between these limitsis presented in the sensitivity analysisin Section 9.1.

Satisfying Separ ation Requirements

It was assumed that the acceptance rate constraint is sufficient to allow the
satisfaction of the separation requirements at the runway. A 7 Nautical Mile separation
requirement was applied at the meter fixes according to consultation with MCTMA
researchers. This separation was applied to the STAs before applying the error in meeting
the STAs.

Internal Departures

Internal departures are modeled in two ways: Departures from major airports are
assumed to be assigned a departure time (similar to APREQ or DSP) based on their
assigned STA at the next fix downstream. It is assumed that these internal departures
takeoff at their actual takeoff timesin computing their estimated time of arrival at each
airport. Therefore, these internal departures are only delayed relative to their actual time
of departure, which might have already been delayed due to an APREQ for example.
Applying McTMA may have an impact on the original takeoff time because less
upstream restrictions may be needed due to the increased capacity by time based
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metering. Analyzing thisimpact would require using scheduled rather than actual
departure times and estimates of the time spent on the ground, and dealing with the
inaccuracies in these estimates, which are still a subject of research for MCTMA as
explained in Section 5.6. Due to time and resource limitations, it was decided not to
analyze the possible change in the original takeoff time and to possibly addressitin
future research.

Departures from smaller airports are not assigned departure times; rather they are
captured when they enter the boundary (freeze horizon) of the next tier. An airport was
identified asamajor internal airport if traffic from this airport constituted more than
approximately 1% of arrival traffic into the destination airport under consideration.

Tower En-Route Control (TEC) Traffic

TEC traffic is assumed to arrive at their actual arrival times, reserving time slots.
Therefore, their ETAs are assumed equal to their actual times of arrival. They are then
assigned STAs and delayed if needed.

Impact on GDPs and Restrictions at System Boundary

Based on consultation with NASA’s MCTMA researchers it was decided,
conservatively and due to time and resource constraints, not to investigate and analyze
the impact of MCTMA on the other restriction programs, such as GDP, applied in the
NAS outside of the McTMA system. This could be done for example by increasing the
demand for the MCTMA system to take advantage of the increased throughput due to
time based metering. Therefore, the arrival and departure demand for the MCTMA system
was kept unchanged from the current actual level of traffic, as detailed in Section 7.2.
The benefits assessment was conducted in periods of time when neither GDP for the
analyzed airports nor MIT restrictions on the boundary of the system, were applied.

7.3. Extrapolation to Yearly Benefits

The daily benefits calculated for the 15 days analyzed were extrapolated to yearly
benefits for 2003 according to when demand exceeds capacity over the year. Benefits are
afunction of how often and for how long metering is applied on any given day, and
flights are metered under MCTMA operations when demand exceeds capacity.
Extrapolation of daily benefits from the 15 days analyzed to daily benefits for other days
in the year, for which benefits have not been calculated explicitly, can thus be estimated
according to how often and for how long demand exceeds capacity. As described in
Section 7.2 demand isidentified to have exceeded capacity when the demand over any 15
minute period exceeds the reported capacity for the 15 minute period (which is the hourly
reported AAR divided by 4). Demand and capacity per 15 minutesis available for every
day in the year from the ASPM database. The procedure by which the daily results for the
15 days analyzed is extrapolated to a year is thus as follows:
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1. The percentage of the day for which demand exceeded reported capacity was
identified for each day in 2003, according to data from the ASPM database.

2. Every day in 2003 was then categorized according to this percentage. Four categories
were identified for the analysis. These categories are evenly distributed over the range
of percentages of the day for which demand exceeded capacity. Only 4 categories
were used to ensure that at least one analyzed day fell into each category, from which
the average daily delays could be calculated for each category.

3. The number of daysin the year falling into each category was cal cul ated.
4. The 15 days analyzed were categorized in the same categories.

5. Theaverage daily benefits for each category were then calculated according to the
daily benefits of the analyzed days that fell into each category.

6. Daily benefits were then extrapolated to yearly benefits by multiplying the average
daily benefits for each category by the number of daysin the year in each category.

In the sensitivity analysis case for which aircraft are only metered by time based
metering when MIT were applied, daily benefits are extrapolated to yearly benefits
according to when MIT restrictions were implemented at the TRACON boundary, and
not when demand exceeded capacity. Thisis because thisis more representative of the
cause of metering in this scenario. Because data for when MIT were applied is only
available for the month of November 2003, the extrapolation is based on November only.
The yearly results are then cal culated assuming the same percentage of MIT impacted
periods for the rest of the year asidentified for November. The results for this analysis
are presented in the sensitivity analysisin Section 9.5.

7.4. Delay Savings

Baseline delay was calculated for each arrival flight at each of the five airports
under consideration, for each of the fifteen days analyzed. Each flight’ s baseline arrival
delay was calculated as the flight’s modeled time of arrival at the airport minusits ETA.
Average arrival delay per flight during baseline metering periods over the fifteen days
analyzed are presented in Table 18 below for each airport, alongside the average number
of flightsimpacted by baseline metering per day. These results are the average of the
results for each day individually.

Arrival delay was also calculated for each arrival flight in the simulation of
MCcTMA at each of the five airports under consideration, for each of the fifteen days
analyzed. Each flight's MCTMA arrival delay was calculated as the flight’s modeled time
of arrival (STA pluserror), minusthe ETA. Average arrival delays per flight during
McTMA metering periods over the fifteen days are also presented in Table 18 for each
airport, alongside the average number of flights impacted by MCTMA metering per day.
The results apply the percentile of the capacity envel opes representing maximum safe
capacity limit (increased capacity). Thisis the expected achievable increase in capacity
over baseline operations as described in Section 7.2.
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It isimportant to note that because baseline and MCTMA operations are metered
during different periods, the average delays per flight presented in Table 18 are not
averages over the same flights.

Table 18. Baseline and MCTMA delay per flight.

Baseline McTMA
Increased Capacity
Airport Average Dela Average Number of Average Dela Average Number of
9 y Flights Metered 9 y Flights Metered
[min / fit] [fits / day] [min / fit] [fits / day]
PHL 10.293 195 5.367 145
LGA 8.072 190 4.192 193
EWR 8.394 124 2.773 107
JFK 10.276 41 4.922 41
TEB 4.834 21 1.976 15

In Table 18 average delay during metering under MCTMA isless than that under
baseline operations, at each of the airports. This means that during periods of metering,
MCTMA is able to meet the applied AAR while incurring less delay per flight than in
baseline operations. This reduction in delay per flight only accounts for reductionsin
delay due to the use of time based metering instead of MIT and TRACON metering, and
not due to weather.

JFK and PHL show the highest average delay per flight under MCTMA metering
of all the airports studied. Thisislikely to be because they are the only airport studied
where significant banks are scheduled. During banks, demand generally exceeds capacity
by a significant amount, and aircraft incur significant delay even under MCTMA
metering. With aflatter schedule, demand does not exceed capacity to the same extent,
and thus the delay during metering is less. Note that LGA, which operates aflatter
schedule, but very close to capacity for much of the day, shows a higher average number
of flights affected by metering per day than PHL, but has a lower average delay per day.
EWR and TEB have lower average delay per day, but also fewer flights affected by
metering per day.

Figure 90 shows an example of the reduction in delay between McTMA and
baseline operations.
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Figure 90. Throughput and delay plotted for PHL for Nov. 25, 2003, under current
operations, and under MCTMA.. The upper two plots show results per hour, and the lower

two show results per 15 minutes.

Itis clear from Figure 90 that the delay under MCTMA operations (the right two

plots) islower than under baseline operations. These plots also show how each model

restricts the throughput to the applied capacity. In the MCTMA cases the 96" percentile

of the capacity envelope is applied, while in the baseline case the 91% percentile of the

capacity envelopeis applied.
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Delay Savings per Year

Thetotal delay savings, extrapolated to the year (2003) as described in Section
7.3, are presented in Table 19 below. The applied capacity is that assuming the expected
achievable increase in capacity as described in Section 7.2.

Table 19. McTMA delay savings per year (2003) assuming an increase in capacity under
MCcTMA.

Yearly McTMA Delay Savings over
_ Baseline Operations
Airport 2003
[min]
PHL 395,000
LGA 267,000
EWR 263,000
JFK 51,000
TEB 10,000

The highest delay savingsresult at PHL, LGA, and EWR, with JFK and TEB
significantly lower. Thisis because JFK and TEB have lower traffic levels, and are less
constrained under current operations, as described in Section 3.1.1. The introduction of
MCcTMA to these airportsis not thus likely to have as significant an impact on delays,
unlessthe traffic levels are increased closer to saturation.

With no increase in capacity the total delay savings are as detailed in below.
Table 20. MCTMA delay savings per year (2003) assuming no increase in capacity.

Airport Yearly McTMA Delay Savings over
Baseline Operations
2003
[min]
PHL 24,000
LGA 20,000
EWR 22,000
JFK 17,000
TEB 0
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The delay savings with no increase in capacity are clearly significantly lower than
those with increased capacity. Thisis because, with no increase in capacity, the delay
savings with MCTMA are exclusively from improved metering efficiency. This suggests
that significant benefits are gained by allowing the airport capacity to increase to utilize
the reduced system service rate variability under MCTMA.

TEB particularly shows no significant delay savings. Thisislikely to be because
of the very low demand at this airport, requiring very little metering.

Distribution of Delay savingsover Tiers

The average delay absorbed in each tier under modeled baseline and MCTMA
operations were calculated over the 15 days analyzed, and compared. The results for PHL
are presented in graphical formin Figure 91 below. The results for the other airports
show similar trends.

Average Delay
during metering
[min]

9

8 - O Baseline
@ McTMA

7

upstream Tier 3 Tier 2 Tier 1 TRACON

Figure 91. Average delay per tier under modeled baseline and McTMA operations, EWR

It can be seen from the results presented in Figure 91 that under modeled MCTMA
operations, the delay is distributed more evenly over the four tiers than under model ed
baseline operations. Thisis because the delayabilities within the McTMA model force
delay to be fed upstream when no more delay can be absorbed between any meter fix pair
without holding. The distribution of delay upstream can be adjusted by adjusting the
delayabilitiesin each tier. If the delayabilities in the TRACON were reduced, thus
requiring the TRACON to absorb less of the delay that must be absorbed, the average
TRACON delay under McTMA would be reduced in Figure 91, and the average delay in
the upstream tiersincreased. In thisway delay can be distributed to the ideal tier for
reduction in fuel burn. In this analysis delayability has not been adjusted specifically to
minimize fuel burn. Instead the delayability is ssmply the maximum delay that can be
absorbed without holding, as described in Section 3.1.3. The sensitivity of the economic
benefits to delayability is presented in Section 9.2.
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7.5. Throughput Increase

The increase in throughput resulting from McTMA operationsis related to both
improved arrival flow efficiency, and the increased airport capacity applied under
modeled McTMA operations. The measurement of throughput is, however, highly
sensitive to the period over which the throughput is measured. The results calculating the
increase in throughput for those periods when flights were metered under MCTMA only
are presented in Table 21 below. The applied capacity is that assuming the expected
achievable increase in capacity as described in Section 7.2.

Table 21. Increases in throughput during McTMA metering (2003) assuming an increase
in capacity.

Airport Increase in Throughput during
McTMA metering periods

2003
(%]

PHL 4.96 %

LGA 2.10 %

EWR 2.61 %

JFK 2.87 %

TEB 0.00 %

The increase in throughput is highest at PHL, and lowest at TEB (negligible). The
throughput increase is likely to be highest at airports that operate significant arrival
banks, because the demand must be particularly high to utilize an increase in capacity
over an extended length of time. PHL operates such a significant bank structure. At
airports where demand does not exceed capacity to the same extent, such as EWR, JFK
and LGA, the arrival queues are shorter. Calculating throughput over metering periods
which include a number of queues thus averages out much of the increase in throughput
in each queue. TEB likely shows a negligible increase in throughput because demand
does not often extend above capacity.

With no increase in capacity the increases in throughput due to MCTMA at each
of the airports are presented in Table 22 below.
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Table 22. Increases in throughput during McTMA metering (2003) assuming no increase
in capacity.

Airport Increase in Throughput during
McTMA metering periods

2003
(%]

PHL 241 %

LGA 1.31%

EWR 2.25%

JFK 2.56 %

TEB 0.00 %

With no increase in capacity, the increase in throughput due to MCTMA
operations is lower at each of the airports. The change is greatest at PHL. Thisislikely to
be because of the banking structure operated, which means the marginal benefit of any
increase in capacity is higher. This effect is discussed in detail in Section 9.1. LGA,
EWR, JFK and TEB show little change in throughput increase. Thisislikely to be
because these aiports do not operate significant banking structures, like at PHL.

7.6. Fuel Burn Savings

Savingsin fuel burn were also calculated for each arrival flight at each of the five
airports under consideration, for each of the fifteen days analyzed. Fuel burn savings
were estimated by cal culating the amount of delay absorbed in each tier of the arrival
network, for each flight, for both the modeled baseline case, and the modeled MCTMA
case. The delay in each tier was then multiplied by an average fuel burn rate (Ib per hour)
according to the aircraft’ s speed, altitude, and weight class, to yield the total fuel burned
in delay, for each flight. Speed and altitude for the upstream fix in each tier were used for
the analysis because delay is generally absorbed during the cruise segment of the flight,
before the decent segment, which would occur in the end portion of the tier. Average fuel
burn rate according to aircraft speed, altitude, and weight class was obtained from NASA
CTAS engineering [9], assuming a cruise flight phase. Thisis consistent with the
assumption that delay is generally absorbed during the cruise segment of the tier, and not
during the decent segment. Figure 92 shows the Mach/altitude profile identified for Large
aircraft types, and the corresponding fuel burn/altitude profile obtained from NASA
CTAS engineering. The Mach/dtitude profile is an average calculated from an analysis
of host track datafor September 10, 17 and 19, 2002. Mach/altitude profiles were also
identified for Small, Heavy and B757 aircraft types, and corresponding fuel burn/altitude
profiles obtained from NASA CTAS engineering.
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Figure 92. Mach/altitude profile and corresponding fuel burn/atitude profile for Large
aircraft types.

It is clear from the fuel burn/atitude profile that fuel burn does not decrease
monotonically with altitude. Thisis unexpected, and may be because Mach/altitude
profiles vary significantly by type, even within the Large aircraft type class. The other
aircraft types show similar effects.

In order to calculate fuel burn savings, fuel burned during delay under MCTMA
was subtracted from the fuel burned during delay in the baseline case, for each flight,
yielding afuel burn saving (in Ib) for each flight. These results were then extrapol ated to
yearly savings as described in Section 7.3, and are presented in Table 23 below. The
applied capacity is that assuming the expected achievable increase in capacity as
described in Section 7.2. As areference for the order of magnitude of these savings, an
Airbus A320 burns as much as 32,000 Ibs of fuel on atranscontinental flight.

Table 23. Average fuel burn savings per year (2003) assuming an increase in capacity
under MCTMA.

Airport Average Fuel Burn Savings
2003
[Ib]
PHL 19,005,000
LGA 15,266,000
EWR 15,873,000
JFK 5,741,000
TEB 520,000

Relative to the amount of fuel burned on a single flight, the fuel burn savings
resulting from McTMA per year are high (in the order of 650 transcontinental flights, at
PHL). These savings are significant as fuel costs are one of the primary components of
airline direct operating costs.
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It can be seen that the fuel burn savings are highest at EWR, LGA and PHL, and
lowest at JFK and TEB. Thisis because JFK and TEB have lower traffic levels, and are
less constrained under current operations, as described in Section 3.1.1.

With no increase in capacity the fuel burn savings are as detailed in Table 25
below.

Table 24. Average fuel burn savings per year (2003) assuming no increase in capacity.

Airport Average Fuel Burn Savings
2003
[Ib]
PHL 2,850,000
LGA 2,613,000
EWR 3,066,000
JFK 3,041,000
TEB 33,000

The fuel burn savings with no increase in capacity are clearly significantly lower
than those with increased capacity, as expected.

7.7. Duration of Metering

The duration of each metering period under modeled MCTMA metering was
calculated for the 15 days anayzed, and the minimum, maximum and mean durations
identified. As described in Section 7.2 the minimum duration for metering was restricted
to 30 minutes. Any metering duration less than this threshold was not counted. The mean,
maximum and minimum durations of MCTMA metering periods are presented in Table
25. The applied capacity is that assuming the expected achievable increase in capacity as
described in Section 7.2.

Table 25. Duration of MCTMA metering.

Airport Mean McTMA Maximum McTMA | Minimum McTMA
Metering Period Metering Period Metering Period
Duration Duration Duration
[min] [min] [min]
PHL 52 345 30
LGA 109 600 30
EWR 66 345 30
JFK 59 165 30
TEB 42 105 30
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According to the results presented in Table 25 the mean MCTMA metering period
duration is significantly higher than the 30-minute applied minimum duration at each
airport. LGA shows the highest average of 1 hr 49 minutes, while TEB shows the lowest
of 42 minutes. Thisis because LGA operates particularly close to capacity for much of
the day, and is thus expected to require longer periods of metering. TEB, however, does
not operate close to capacity as often, and does not operate clear banks, so is not expected
to require long periods of metering. Although JFK has lower traffic, the mean MCTMA
metering period duration is high, at 59 minutes. Thisislikely to be because although JFK
does not violate capacity often, it does operate significant banks (particularly in the
afternoon), which are likely to require significant metering. Thus, when the airport
requires metering, the duration of the metering islong.

L GA shows the highest maximum duration of metering, of 10 hrs. LGA operates
at high demand throughout the day with very few lullsin demand, and thus has little
opportunity for delay recovery under low capacity. When capacity islow metering is thus
likely to be required through most of the day. JFK and TEB show maximum durations of
only 2 hrs 45 minutes and 1 hr 45 minutes respectively. Thisis because of the lower
demand at these airports.

The minimum McTMA metering period duration was 30 minutesin all cases,
which corresponds to the applied minimum duration. This means the minimum duration
was a constraining factor at all airports.
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8. Estimated McTMA Economic Benefits

The benefits of MCTMA identified from the analysis of the benefit mechanismsin
Section 6 are increased throughput, reduced average delay and reduced fuel burn as
presented in Section 7. The mechanisms by which these benefits result in direct economic
benefits are detailed in Figure 93.
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Figure 93. Direct economic benefits.

Without any strategic responses by the airlines to change demand, increased
throughput results directly in reduced average delay. A reduction in average delay results
directly in areduction in airborne operations, and thus aircraft direct operating costs.
However, increased throughput also allows the airlines to increase demand. An increase
in demand increases revenue according to the operating profit made on each of the flights
added, but also increases average delay. There is thus a tradeoff between increasing
demand and reducing delay. An increase in demand requires a strategic response by the
airlines and is not modeled in this study. This study thus considers the benefits associated
with areduction in delay only.

Reduced delay and increased demand also result in added value to passengersin
terms of time savings and increased travel time opportunities. These however are also not
modeled in this study, based on feedback from NASA’s researchers.

8.1. Methodology for Calculation of Economic Benefits

Economic Benefits of Delay Savings

Average aircraft operating costs per airborne hour were estimated according to the
FAA APO 1998 [10], for each of the 4 different aircraft weight classes (small, large,
heavy and Boeing B757). The results were corrected for inflation from 1996 Dollarsto
2003 Dollars according to an inflation calculator provided by the U.S. Department of
Labor Bureau of Labor Statistics [11]. Because fuel burn savings are calculated
separately in the simulations, fuel and oil costs were excluded from the values estimated.
The cost of the delay (excluding fuel) of each flight was thus cal culated according to the
minutes of delay relative to the flight's ETA, and according to the aircraft’s weight class.
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Economic Benefits of Fuel Burn Savings

Fuel cost was estimated for November 2003, as recorded by the Bureau of
Transportation Statistics Office of Airline Information [12], at US$ 0.84 per gallon. The
economic savings resulting from the savings in fuel burn were calculated using this value.

Daily Economic Benefits

The economic benefits for each day were calculated by comparing the total
operating profit in the baseline case to the total operating profit with McTMA in
operation. The baseline operating profit per flight can be estimated according to historic
financial data recorded by the Bureau of Transportation Studies Office of Airline
Information [13]. As presented in equation (11) below, dividing system operating profit
by total system departures, yields operating profit per flight.

Operating Profit [US$/quarter]
Total Operations [Deps/quarter]

Operating Profit per flt [US$/flt] = (11)

Operating profit is calculated by subtracting operating cost from operating
revenue. Operating profit per flight can thus be calculated by subtracting operating cost
per flight from operating revenue per flight. In order to exclude cyclical effects, the
average operating cost and revenue per flight, for all quarters from the first quarter of
1996 to the third quarter of 2003 were calculated. Average operating cost was found to be
US$13,546 per flight (with a standard deviation of US$ 1,108 per flight). Average
operating revenue was found to be US$ 13,888 per flight (with a standard deviation of
US$ 1,660 per flight). Thisyields an operating profit of US$ 342 per flight. Baseline
operating profit on each day can be estimated accordingly by multiplying by the number
of flights on each day.

The operating profit with MCTMA in operation can be estimated by adding the
economic savings due to delay and fuel burn, per flight, to the baseline operating profit of
USS$ 342 per flight. Operating profit per day, using McTMA, can thus be estimated
according to equation (12) below.

McTMA Operating Profit per day [US8] = Total Operations per day [Arrs] x
(Operating Profit per flt [US$/flt] + Delay Savings per flt [US$/flt] +
Fuel Burn Savings per flt [US$/flt]) (12)

Total increase in operating profit for the day, dueto MCTMA, can then be
calculated by finding the difference between the baseline and MCTMA operating profits
for the day. In this calculation operating profit per flight cancels out.

Extrapolation to Yearly Benefits

The daily economic benefits are extended to results for the entire year (2003)
according to the process described in Section 7.3, extrapol ating benefits according to
when demand exceeds capacity.
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8.2. Yearly Economic Benefit Results

The results of the economic benefit analysis described in Section 8.1, which
describe the yearly increase in operating profit due to MCTMA operations over current
baseline operations, are presented in Table 26 below. The applied capacity is that
assuming the expected achievable increase in capacity as described in Section 7.2.

Table 26. Yearly increase in operating profit due to McTMA (2003) assuming an increase
in capacity under MCTMA.

Airport 2003[l\jgzr}yy§:r\]/ings
PHL 17,275,000
LGA 11,810,000
EWR 12,817,000
JFK 3,289,000
TEB 383,000

The highest benefits per year with an increase in capacity are seen at PHL, EWR,
and LGA. Aswith delay savings (Section 7.4) and fuel burn savings (Section 7.6) JFK
and TEB show lower benefits. Thisis because there isless traffic at these airports and the
demand does not saturate the airport capacity to the degree that it does at LGA, EWR and
PHL. It is thus expected that MCTMA will show lower benefits at these airports.

The benefits at PHL are quite significantly higher than those at EWR and LGA.
Thisis because the percentile of the capacity envelope applied at PHL, representing
increased capacity (96™ percentile), is higher than those applied at EWR and LGA (95"
percentile); and because the marginal benefit of increased capacity is higher at PHL than
EWR and LGA. The marginal benefit of capacity at each airport, which isrelated to the
bank structure operated at each airport, is discussed in detail in Section 9.1 in the
discussion on the sensivity of the result to capacity.

The benefits of MCTMA assuming no increase in capacity are presented in Table
27 below.
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Table 27. Y early increase in operating profit due to MCTMA (2003) assuming no

increase in capacity.

Airport 2003[l\jgzr}yy§:r\]/ings
PHL 1,302,000
LGA 1,141,000
EWR 1,343,000
JFK 1,268,000
TEB 4,000

With no increase in capacity assumed, which represents the lowest limit for

MCcTMA benefits, al airports show significantly lower benefits than with an increasein

capacity. This suggests that significant benefits are gained by allowing the airport

capacity to increase to utilize the reduced system service rate variability under MCTMA.
However, without thisincrease MCTMA does still show benefits (except at TEB). These
benefits are exclusively due to improved metering efficiency and feeding delays upstream
to higher altitudes where the fuel burn rate is reduced.
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9. Sensitivity Analysis

There are two reasons for which parameters were varied and the model sensitivity
tested. The first reason isto vary parameters that represent benefit mechanisms, to push
the limits of the system under MCTMA. The second isto vary parameters to test whether
or not the developed models hold under varying assumptions about the values of these
parameters. The following parameters were varied to test benefit mechanisms:

e Airport capacity under MCTMA, represented by the airport acceptance rates
(AARs) from the airport capacity envelopes.

e Sector capacities, represented by each sector’ s delayability, or amount of delay
that can be absorbed in each sector without holding.

e Error € in meeting STAS.

e Operating cost per flight.

e Metering periods, including the minimum duration of metering, and the criteria
for initiating metering.

The results of varying each of the above parametersis discussed in detail below.
The nominal case presented in each section applies the expected achievable increasein
capacity under MCTMA operations, as described in Section 7.2.

9.1. Airport Capacity under McTMA

The airport capacity applied under MCTMA was varied over arange of values to
investigate the sensitivity of the benefits to this parameter. The lowest capacity applied
was the percentile of the capacity envel ope that was modeled to constrain the baseline
TRACON model, while the highest capacity applied was the 98" percentile of the
capacity envelope. Applying the percentile of the capacity envelope that was modeled to
constrain the baseline TRACON model constrains McTMA to the same airport capacity
as the baseline, thus modeling the benefits of MCTMA if no additional airport capacity
over current operationsis utilized. This assumes that under MCTMA each airport’s
capacity is underutilized to the same extent asit is under current baseline operations. This
isaparticularly conservative assumption because MCTMA allows an increase in applied
capacity because of the reduced variability in the system servicerate, as explained in
Section 6. The identification of the percentile of the capacity envelope that constrains the
baseline TRACON model is described in Section 4.2, under calibration of the baseline
TRACON delay model. The percentiles of the capacity envelopes that constrain the
baseline TRACON models were found to be as follows: PHL - 91% percentile, LGA —
88" percentile, EWR — 88" percentile, JFK — 95" percentile, TEB — 96" percentile.

The results presented in Table 28 are significantly lower than presented in Section
8.2. This suggests that significant benefits are gained by alowing the airport capacity to
increase under MCTMA. However, without thisincrease MCTMA does still show
benefits. These benefits are due to improved metering efficiency and feeding delays
upstream to higher altitudes where the fuel burn rate is reduced.
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As described in Section 3.1.1 the 99" percentile of the capacity envelope
calculated per half hour was considered to represent the maximum safe limit to capacity.
The 98™ percentile of the capacity envelope was thus chosen as the highest capacity
applied in the sensitivity analysis. Table 28 below shows the yearly benefits for each of
the AARs modeled, from the percentile of the capacity envel ope that was modeled to
constrain the baseline TRACON model, to the 98™ percentile of the capacity envelope.
This provides arange of the benefits resulting from McTMA depending on what airport
capacity is applied. These results are presented in graphic form in Figure 94 below. The
nominal case, which represents the capacity increase achievable without violating the
maximum safe capacity limit, is highlighted in bold in Table 28, and a'so marked on the
curvesin Figure 94.

Table 28. Y early increase in operating profit dueto MCTMA, 2003 — varying applied
airport capacity under MCTMA.

Percentile 2003 Yearly Savings

of Capacity [US$/ year]

Envelope PHL LGA EWR JFK TEB
88" % 1,141,000 | 1,343,000
89" % 2,478,000 | 3,602, 000
90" % 3,353,000 | 5,505,000
91% % 1,302,000 | 5,623,000 | 7,699,000
92" 05 5,809,000 | 5,946,000 | 9,095,000
93" 95 9,855,000 | 8,838,000 | 10,547,000
94" o 13,112,000 | 11,045,000 | 11,938,000
95" 9% 15,677,000 | 11,810,000 | 12,817,000 | 1,268,000
96" % 17,275,000 | 12,691,000 | 13,430,000 | 2,579,000 4,000
97" % 19,219,000 | 14,071,000 | 13,358,000 | 3,289,000 157,000
98" 9% 19,970,000 | 15,538,000 | 13,819,000 | 4,435,000 383,000
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Figure 94. Y early increase in operating profit due to MCTMA, 2003 — varying applied
airport capacity under MCTMA.

Itsis clear from the resultsin Table 28 and from Figure 94 that the economic
benefits of MCTMA increase with increasing airport capacity. The rate of increase,
however, consistently decreases at higher percentiles of the capacity envelopes. Thisis
because as the airport capacity increases, the relative benefit of the increase decreases, as
there are fewer periods of demand that are able to utilize the increased capacity. The
benefits are expected to reach a maximum above which any further increase in capacity
would produce no further benefit, because all the demand is under capacity.

The curve for PHL is steeper than those for LGA and EWR. This means that the
margina benefits from increasing the capacity by one percentile are larger at PHL than
the other airports. The larger steepness at PHL islikely to be due to the schedule bank
structure operated at PHL, and the higher demand to capacity ratio during the banks. At
LGA and EWR the demand is more spread out and thus, after few percentile increasesin
capacity, the benefits plateau. Thisis because the capacity satisfies the demand at these
percentiles. At PHL it takes more percentile increases in capacity to exceed the demand
because of the large demand peaks. The marginal benefits for each percentile increasein
capacity are thus higher.

It isalso clear from Figure 94 that the increase in benefitsis smooth in all cases
except LGA. Thelack of smoothness at LGA is due to resolution problemsin the
identification of the 91% to 96™ percentiles of the capacity envelopes for LGA. As can be
seen in Figure 9 there are portions of the capacity envelopes at LGA for which resolution
between different percentilesis limited, as discussed in detail section 3.1.1.
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9.2. Delayability

The delayability between each meter fix pair was also varied, and the yearly
benefits recorded. Delayability was calculated as the 90™ percentile of delay absorbed
between meter fixes, relative to the unimpeded transition times between meter fix pairs,
for the results presented in Sections 7 and 8. The resulting delayability was increased and
decreased by 30%, and the benefits calculated, to investigate the sensitivity to this
parameter. The results are presented in Table 29 below. Such an increase (30%) in
delayability corresponds approximately to using the 95" percentile of delay absorbed
between meter fixes for calculation of the delayability, instead of the 90™ percentile.,

Table 29. Yearly increase in operating profit dueto MCTMA, 2003 — varying
Delayability.

2003 Yearly Savings
Airport [US$ / year]
Nominal Case Incr_e_ase in Decr_e_ase in
Delayability by 30% | Delayability by 30%
PHL 17,275,000 17,481,000 17,628,000
LGA 11,810,000 11,959,000 12,069,000
EWR 12,817,000 12,957,000 12,857,000
JFK 3,289,000 3,391,000 3,369,000
TEB 383,000 352,000 358,000

It is clear from the results presented above that the changes in yearly savings
resulting from increases and decreases in delayability are small. The changesin the
results are small enough to be in the noise caused by the variabilities modeled in the
baseline and McTMA models, so atrend cannot be identified. It is expected that a
decrease in delayability would increase the benefits as lower delayabilities, particularly at
the downstream tiers, increase the amount of delay fed back upstream. If fuel burnis
lower at higher atitudes, economic savings would be expected to increase with this
effect. Asdiscussed in Section 7.6, however, the relationship between fuel burn and
atitudeis not simple.

9.3. Error in Meeting Scheduled Times of Arrival

The error is meeting STAs was modeled by sampling from a normal distribution
centered at zero, with a standard deviation of 90 sec, and a maximum and minimum error
of two standard deviations (180 sec and -180 sec respectively). According to aNASA
study at DFW, however, the standard deviation in the error in meeting STAsis 150 sec.
The mean error in this study was found to be very close to zero. The standard deviation
was thus increased to 150 sec, and decreased to 60 seconds to determine the sensitivity of
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the results to the variability with which aircraft meet their STAs. The maximum and
minimum errors were also adjusted accordingly (two standard deviations). The effect of
increasing the mean error from zero to 60 seconds was also analyzed, modeling a bias
towards flights arriving at the meter fixes late, on average. Similarly the effect of
decreasing the mean error from zero to -60 seconds was also analyzed, modeling abias
towards flights arriving at the meter fixes early, on average. According to MCTMA
researchers aircraft are likely to arrive at meter fixes early more often than late because
controllers are in compliance even if aircraft arrive at their meter fixes when the delay
request displayed to them is 1 minute, and not only when it is zero. This means that an
aircraft may be 1 minute early and still be in compliance.

The results for each of these casesis presented in Table 30 below.

Table 30. Yearly increase in operating profit dueto MCTMA, 2003 — varying the mean
error in meeting STAs (i) and standard deviation in meeting STAS (o).

2003 Yearly Savings
[US$ / year]
Airport
=0sec
K L =0sec R =0sec WL =60 sec WL =—60 sec
O =90 sec
. O =150 sec O =60 sec 0 =90 sec 0 =90 sec
(Nominal)
PHL 17,275,000 16,527,000 17,782,000 13,031,000 21,357,000
LGA 11,810,000 10,435,000 12,538,000 4,842,000 17,917,000
EWR 12,817,000 11,595,000 13,549,000 8,721,000 16,414,000
JFK 3,289,000 3,275,000 3,551,000 1,950,000 4,762,000
TEB 383,000 280,000 380,000 135,000 516,000

The effect of varying the standard deviation in the error in meeting STAs can be
seen in Figure 26 to be small. Asthe standard deviation in the error in meeting the STA is
increased savings decrease dlightly, and asiit is reduced, savings increase dightly. Thisis
expected as increased variability in meeting STAs is expected to reduce the benefits of
MCcTMA. It isclear, however, that the benefits are not sensitive to the standard deviation
in the error in meeting STAS.

The effect of increasing the mean error in meeting STAs to 60 seconds can be
seen in Figure 26 to be significant, reducing the benefits of MCTMA quite severely. This
is because the increased mean error in meeting STAs forces aircraft to be late on average,
which increases delays under MCTMA operations. This suggests that it is particularly
important to ensure that the mean error in meeting the STAsis not greater than zero.

The effect of decreasing the mean error in meeting the STASto -60 seconds can
be seen in Figure 26 to increase savings significantly. Thisis expected asthis analysis
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models aircraft to arrive early, on average, which reduces average delay. Thisincreasein
savings assumes that all errorsin meeting STAs are centered at -60 seconds. This
includes flights for which STAs are equal to ETAS. For these flights, this would require
the aircraft to arrive at the meter fixes earlier even than its ETAS. Thisis not
unreasonable, however, as the average standard deviation in unimpeded transition times
for each airport, which define flight ETAS, is 90 seconds. This means that an aircraft
arriving 90 seconds early has transition times within approximately one standard
deviation of estimated unimpeded transition times.

9.4. Operating Cost per Flight

Asdetailed in Section 8 above, operating cost per flight was estimated as the
average operating cost per flight for al quarters from the first quarter of 1996 to the
second quarter of 2003. The standard deviation in operating cost over this period was
USS$ 1,108 per flight, which is 8% of the average. Operating cost per flight, for both
McTMA and baseline operations, was thus increased and decreased by this standard
deviation, and the yearly benefits recal culated, as presented in Table 31. Thisresultsina
corresponding 8% increase and decrease in benefits.

Table 31. Yearly increase in operating profit dueto MCTMA, 2003 — varying operating
cost per flight.

2003 Yearly Savings
[US$ / year]
Airport .
_ 8% increase in 8% decrease in
Nominal Case | operating Cost per | Operating Cost per

flight flight
PHL 17,275,000 18,657,000 15,893,000
LGA 11,810,000 12,755,000 10,865,000
EWR 12,817,000 13,842,000 11,792,000
JFK 3,289,000 3,552,000 3,026,000
TEB 383,000 414,000 352,000

Theresultsin Table 31 suggest that MCTMA will show high benefits regardless
of the state of the airline industry. Thisis because MCTMA reduces costs significantly,
which otherwise remain relatively constant. It does not reduce revenue, which is highly
dependent on the economy and state of the airline industry.
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9.5. Metering Periods

The sensitivity of the economic benefits of MCTMA to the metering periods,
including the sensitivity to the minimum duration of the metering periods, and the criteria
whereby metering isinitiated, are presented below.

Minimum Duration of Metering

Asdiscussed in Section 7.2, the minimum duration for metering was chosen as 30
minutes. Alternative values of 15 minutes and of 60 minutes were analyzed, and the
sensitivity of the benefitsto this parameter identified. The results are presented in Table
32 below.

Table 32. Yearly increase in operating profit dueto MCTMA, 2003 — varying minimum
duration of metering.

2003 Yearly Savings
[US$ / year]
Ai
Irport Nominal Case . . . .
. ) Minimum Duration Minimum Duration
Minimum Dyranon =15 min = 60 min
=30 min

PHL 17,275,000 18,313,000 11,970,000
LGA 11,810,000 11,590,000 10,024,000
EWR 12,817,000 14,170,000 10,156,000
JFK 3,289,000 3,574,000 2,977,000
TEB 383,000 397,000 268,000

According to the results presented in Table 32, the sensitivity to the minimum
duration of metering is small in most cases. Benefits are generally increased when the
minimum duration of metering is reduced to 15 minutes, because more periods are
metered (fewer periods are discarded because they are too short). The changesin the
results are small enough to be in the noise caused by the variabilities modeled in the
baseline and McTMA models. The benefits are consistently lower when the minimum
duration of metering is increased to 60 minutes. This is because fewer periods are
metered (more periods are discarded because they are too short), and thus the benefits of
metering are lower.

Criteriafor Initiating Metering

Asdiscussed in Section 7.2, an aternative scenario to that applied in Sections 7
and 8 is considered, where MCTMA is assumed to exactly replace MIT metering. In this
scenario MCTMA is modeled to meter aircraft only during those periods when MIT
restrictions were applied in the baseline model. This resultsin significantly different
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metering periods than in the scenario presented in Sections 7 and 8 where MCTMA

metering is initiated when demand exceeds capacity. Consequently the economic benefits

for this scenario are different. These benefits are presented in Table 33 below.

Table 33. Yearly increase in operating profit dueto MCTMA, 2003 — alternative scenario

for when flights are metered.

2003 Yearly Savings
[US$ / year]
Airport

' Nominal Scenario Alternative Scenario

(Metering when (Metering during MIT

Demand > Capacity) periods only)

PHL 17,275,000 12,330,000
LGA 11,810,000 2,255,000
EWR 12,817,000 6,762,000
JFK 3,289,000 2,866,000
TEB 383,000 451,000

It is clear from the results presented in Table 33 that the benefits are significantly
lower under the alternative scenario where flights are metered during MIT periods only.
Thisis because MIT metering is not applied during many of the periods when demand

exceeds capacity. If restricted to meter only during period when MIT were applied,

McTMA thus meters significantly fewer flights. The benefits are correspondingly lower.
LGA particularly shows avery large decrease in benefits. This suggests that the greatest

difference between the amount of metering under the two scenariosisat LGA. LGA
operates for much of the day above capacity, so under the nominal scenario thereis

metering through much of the day. MIT are not, however, generally applied throughout
the day, even at LGA, and thus the benefits in the alternative scenario are significantly

lower.
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10. Extrapolation to Future Years and Other
Facilities

The MCTMA assessed benefits presented in Section 8 were extrapol ated to future
years as described in Section 10.1 below. A procedure for extrapolating the benefits to
other candidate MCTMA facilitiesis suggested in Section 10.2.

10.1. Extrapolation to Future Years

As mentioned in Section 2.2.2, the McTMA benefits for future years were
extrapolated by simulating future baseline operations without the application of MCTMA
and comparing them to simulated future operations with the application of MCTMA. In
section 4 the modeling of baseline operations is described in detail. This model was used
to simulate future baseline operations, under future demand levels. The MCTMA model,
described in Section 5, was used to simulate future operations with the application of
MCcTMA.

Demand Increasein Future Years

The benefit assessment for future years was calculated for demand increased
according to the forecasts for each year 2010, 2015, and 2025. The FAA APO TAF [14]
forecasts demand increases for these years, relative to 2003 levels, as follows:

Table 34. Forecast increases in demand over 2003 levels.

Forecast Increase in Demand from 2003
Airport (%]
2010 2015 2025
PHL 25.0% 37.8% 63.4 %
LGA 7.7 % 7.7 % 7.7 %
EWR 28.6 % 425 % 70.2 %
JFK 244 % 41.9% 76.7 %
TEB 143 % 245% 449 %

Theincrease in demand at LGA isforecast to be restricted in 2006. The demand
at LGA thus maintains a constant level after 2006. Thislevel isonly 7.70 % higher than
2003 demand levels. The increase in demand is not restricted at any of the other airports
considered. The TAF only forecasts demand to 2020. The 2025 percentage increases are
extrapolated linearly beyond 2020. A linear extrapolation is the same as used by the TAF
prior to 2020.
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The approach to analyze the future benefits under increased demand was to rerun
the analysis under demand that is increased by randomly adding flights into the schedule.

Demand was increased randomly, but ensuring that the temporal and spatial
distribution of flights through the day, and across the arrival network for each airport,
was maintained. The temporal distribution of arrivals was maintained by increasing the
demand in each hour by the same percentage, and distributing the new flightsin each
hour evenly over that hour. The spatial distribution of arrivals was maintained by
randomly assigning each new flight to a network stream according to the ratios of the
number of flights arriving on that stream in the baseline, to the total number of flights
arriving at the airport in the baseline. The increase in schedule did not reflect the move
towards increased jet to prop ratio in the mix of traffic.

MIT Increasein FutureYears

In order to predict MIT in future years, the restriction generation part of the
current operations baseline model described in Section 4.1, was run for future years. This
model is based on ASPM demand, which is not known for future years. Since ASPM
demand is derived from the actual and scheduled arrival times of flights, it is possible to
estimate it using the ATAs and ETAS calculated with the increased demand of future
years. In a15-minute time period, ASPM demand is the number of flights that land in the
period as well as the number of flights that were scheduled to land in or before the period,
but which have not yet landed. It is also possible to estimate the scheduled demand from
the ETAsaone. The ETA demand and the estimated ASPM demand were each compared
to actual ASPM demand for 2003. The results of this comparison are shown in Table 35
as correlation coefficients and the square roots of the sums of the squares of the residuals,
both calculated over the month of November 2003.

Table 35. Results of the comparison of actual ASPM demand with each of an estimated
ASPM demand calculated from ETAs and ATAS; and an estimated scheduled demand
caculated from ETAS.

Estimated ASPM demand model ETA demand model
Airport Correlation Correlation
2 2
Coefficient V(Zres?) Coefficient V(Zres?)
PHL 0.741 168.3 0.910 79.3
LGA 0.598 168.6 0.636 161.1
EWR 0.495 139.1 0.535 136.4
JFK 0.761 99.9 0.818 66.1
TEB 0.842 51.8 0.848 47.2

When comparing both the correlation coefficients and the square roots of the
sums of the sgquares of the residuals, all airports show a closer correlation between actual
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ASPM demand and ETA demand than between actual ASPM demand and the estimated
ASPM demand. For this reason, ETA demand was taken as the best estimate of ASPM
demand and hence used in the restriction generation model. The performance of this
estimate of ASPM demand is shown in Table 36 by comparing the results of the
restriction generation model for a period of time in November 2003 when using actual
ASPM demand; and when using the ETA demand. The results are shown as fractions of
the period of time for which each airport is under restriction. All days with GDP/GS are
omitted from the analysis, which is also restricted to the 15 days analyzed from
November 2003.

Table 36. Comparison of fraction of month restricted in November 2003, as calculated by
the restriction generation model using ASPM demand as input, and using ETA demand as
input.

Airport Model using actual ASPM Model using ETA demand
demand
PHL 11.7% 6.5%
LGA 22.2% 20.1%
EWR 9.9% 2.3%
JFK 1.9% 2.4%
TEB 7.2% 5.0%

Using ETA demand under predicts at all airports except JFK where it over
predicts dlightly, indicating that the ETA demand estimate of ASPM demand is
conservative.

Since the model isto be used to predict restrictionsin future years, it isinsightful
to compare the restrictions predicted with actua restrictionsin 2003, available from the
logs. Table 37 shows the extrapolation to 2015 compared to both the model results (using
ETA demand) in 2003 and the log restrictions in 2003.

At all airports, there was an increase in the fraction of the month restricted in
2015 from 2003, as expected. When comparing to the modeled restrictions in 2003, the
increaseis significant at both EWR and PHL due to the high increase in demand
predicted by the TAF at these airports. At LGA, the increase is smaller since the demand
at LGA is capped in 2006.
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Table 37. The fraction of the month of November restricted according to the logs and the
restriction generation model in 2003, compared to the fraction cal culated by the model
for 2015.

Airport Logs Restriction Generation Model
2003 2003 2015
PHL 13.7% 6.5% 20.6%
LGA 12.8% 20.1% 25.2%
EWR 6.3% 2.3% 22.4%
JFK 1.8% 2.4% 8.3%
TEB 11.7% 5.0% 12.6%

10.1.1. Extrapolation Results for Year 2015

The results presented in Section 8 were extrapolated to 2010, 2015, and 2025 by
modeling the forecast increased demand at each airport and the identified increasesin
MIT, and comparing the MCTMA simulation results to the smulated MIT baseline
results. MCTMA arrival delay and fuel burn were calculated on each of the 15 days, and
yearly benefits calculated accordingly. These yearly benefits thus represent the yearly
benefits of MCTMA operations in 2010, 2015, and 2025. The assumptions made
regarding the modeling are identical to those described in Section 7.2, including
application of the the expected achievable increase in capacity under MCTMA operations.
The results are presented in Table 38 below.

Table 38. Yearly increase in operating profit due to MCTMA, extrapolated to 2010, 2015,
2025 (in 2003 US Dallars).

Yearly Savings
Airport [2003 US$ / year]
2003 2010 2015 2025

PHL 17,275,000 56,538,000 94,779,000 363,808,000
LGA 11,810,000 28,569,000 29,480,000 29,409,000
EWR 12,817,000 96,655,000 196,430,000 520,122,000
JFK 3,289,000 14,595,000 40,253,000 172,494,000
TEB 383,000 605,000 1,635,000 12,922,000

141



$600,000,000

$500,000,000 -
7y
¥ $400,000,000 -
2 —o—EWR
'32 ————PHL
(0]
$ $300,000,000 - —--@--- JFK
g —-e--LGA
E —-%—- TEB
o $200,000,000 -
=

$100,000,000

$0 ! - ‘% - ( T T
2000 2005 2010 2015 2020 2025 2030

Year

Figure 95. Increase in MCTMA Benefits from 2003 to 2025.

It isimportant to note that the delay levels after 2003 are very high under both
current operations and McTMA operations. Thisis expected, however, given the demand
increase forecast by the FAA APO TAF [14], and the capacity applied, which was not
increased above those applied for the 2003 benefits. This means that under current
operations or under MCTMA these levels of demand are not feasible. This observation is
consistent with [15] which suggests that current demand forecasts do not adequately
account for capacity constraints.

10.1.2. Remaining Issues

McTMA may be extended to include the PHL and N90 inbound flows from ZID.
One approach to add the benefits from the ZID flowsisto first determine how many
streams the ZID flows add and to which tiers; then to assess the fraction of the benefits
associated with similar streams that were already included in the analysis; and finally to
augment the benefits by this fraction. However, the impact of ZID’s flowsinto N90 and
PHL was not addressed in the extrapolation of the benefits to future years. This makes the
current assessment conservative, as it does not include the added benefit from the ZID
flows.
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10.2. Extrapolation to Other Facilities

SAIC identified a number of potential MCTMA sitesin task order 54 [16]. Their
criteriaincluded: facility operational requirements, ARTCC/TRACON boundaries,
airspace complexity, airport capacity/delay, and weather phenomena. Metrics that
represent these criteriamay be used to scale and extrapolate the MCTMA benefits
identified for PHL and N9O to other facilities. However, as[16] concluded, common
metrics do not currently exist for most of these criteria, such as airspace complexity and
weather phenomena. Devel oping such metrics would require extensive research beyond
the scope of this task. Some metrics can, however, be developed to represent one of these
criteria, i.e. airport capacity, which was identified as the main parameter impacting
MCcTMA benefits.

Therefore, the method suggested for the extrapolation of the PHL and N90
MCcTMA benefits to other facilities is based on metrics representing airport capacity and
the airport demand relative to this capacity. Three metrics for demand and capacity were
identified. These metrics were selected such that they can be easily computed using
ASPM data. The metrics are as follows:

1. Thetotal number of arrival operations at an airport per day (directly representing
demand),

2. The percentage of the year for which arrival demand exceeds reported arrival capacity
(representing when McTMA will be operated, asit is to be operated when demand
exceeds capacity), and

3. The utilization of the airport (representing how close to available capacity the airport
operates).

Utilization was estimated as the ratio of the average actual throughput to the 99"
percentile of the actual throughput at the airport.

An equation relating these three metrics to the benefits was derived from the
following relation from queuing theory (see Section 2.2.1 equation (2)):

A

where 1 represents demand and i represents capacity.

Delay o<

Benefits are considered proportional to delay. Thiswas observed in the
extrapolation to future years. An exponential increase in delay led to an exponential
increase in benefits, as shown in Section 10.1.1.

The physical behavior of the queuing relation may be considered by recognizing
that the arrival demand 4 is equivalent to the average number of arrival operations
(4rrOps). When arrival operations tend to zero, the delay and hence benefits will also
tend to zero. Similarly, when demand tends to the real capacity, the delay, and hence
benefits, tend to infinity.

A lu is approximated by the product of the percentage of the year for which arrival
demand exceeds reported arrival capacity (thisisameasure of the duration of metering)
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and the utilization of the airport (thisis a measure of the average difference between
demand and capacity):

P, xUtil %

where Pp-c is the percentage (between 0 and 100) of the year for which arrival
demand exceeds reported arrival capacity (measured per 15 minute interval), Util isthe
utilization of the airport.

Thisyields the following equation relating the three metrics to the benefits:

ArrOps perday
1- B(PD>C )(Utll)

Benefits = A{

where 4, and B are constants.

The least squaresfit of this equation to the benefits quoted in Table 26 for the
assumption of an increase in capacity, and the three metrics yielded a correlation
coefficient of 0.966 and a square root of the sum of the squares of the residuals of
$6,246,000.

The resulting constants resulted in the following equation:

AI"}"OpS erda
Benefits =19,366 x L (13)
1-(0.0213)(P,. . )(Util)

The data used for the metricsin this analysis can be easily extracted from the
ASPM database (http://www.apo.data.faa.gov/faamatsall. HTM). Arrival demand comes
from the ARRDEMAND field in the database, reported arrival capacity from the AAR
field, and number of arrival operations (or throughput) from the EFFARR field.
Utilization is calculated from the average and 99" percentile of this field over ayear.

As an example the above model was used to predict the benefits at LGA.
According to the ASPM database the inputs were as follows:

1) The percentage of the year for which arrival demand exceeded reported arrival
capacity, Ppsc, was 37.73 %.

2) Theaverage number of arrival operations per day over the year, ArrOpsper day, WaS
510.6 aircraft.

3) Theutilization, calculated as the ratio of the average actual throughput to the 99™
percentile of the actual throughput at the airport was 0.51.

The resulting McTMA benefits calculated per year were: US $ 16,791,000. This
compares to the results presented in Table 26 of $15,535,000. The error is 8.1%.
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11. Conclusions and Recommendations

The benefit estimates of MCTMA assessed in this study are believed to be redlistic
and robust for a number of reasons:

1. A large sample of days was analyzed — fifteen days of November 2003. These days
represented a random and wide range of metering conditions (demand exceeding
capacity) both in terms of duration and severity.

2. Daysor periods of time when the system was thought to be restricted by constraints
irrelevant to MCTMA (or not included in this study) such aslocal restrictions not
related to runway capacity or strategic restrictions like ground delay programs, were
excluded. Thiswas donein order to limit the benefits assessment conservatively to
those delays that MCTMA is believed to mitigate.

3. The benefit estimates are also believed to be realistic because they resulted from
comparing aMcTMA model of time based metering to amodel of baseline operations
using distance based metering. By using model ed baseline operations care was taken
to model only procedures and dynamics that are relevant to MCTMA — situations of
demand exceeding capacity that require metering through distance based metering (as
opposed to rerouting or GDP for example).

4. The delays were measured with respect to unimpeded estimated times of arrival.
These unimpeded times were derived from statistical models based on analysis of
historical track data. The statistical unimpeded times took wind, aircraft type, and
runway configuration into account. These statistical models were compared to
estimated times of arrival computed from trajectory synthesis (the CTAS Trajectory
Synthesizer process) based on flight plan, wind, and aircraft performance. The
statistical models compared well to the trgjectory synthesis models as reported in
Section 3.2.

The benefit estimates of MCTMA assessed in this study are also believed to be
conservative due to a number of reasons;

1. The benefits assessment focused on a subset of MCTMA functions as described in
Section 4. These functions included time based metering by generating STAS, delay
feedback and capacity distribution, dynamic metering, tiered metering, coordination
between multiple facilities, demand visualization, and scheduling of internal
departures. Functions such as runway assignment, which are planned but not
currently implemented in MCTMA, or other functions envisioned in the future, were
not analyzed. These additiona functions may be analyzed in future research and
extension of the benefits assessment.

2. Benefit mechanisms were derived for each of the McTMA functions and described in
chartsin Section 6. However, due to time and resource limitations, not al of the
benefit mechanisms were modeled and analyzed in this study. The benefit
mechanisms not analyzed are indicated with dashed arrows in the benefit mechanisms
chartsin Section 6. Most notably these include:
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e Switching flights between arrival flows either to avoid severe weather
impacting an arrival gate or to more optimally offload aircraft to other facilities
in the face of congestion.

e Improved decisionsto shut off the traffic in extreme situations causing no-
notice holding or gridlock.

e Interaction with facilities outside of the MCTMA system such as the Command
Center or other ARTCCs. Thisinteraction may lead to reduction in the use or
severity of ground delay programs or MIT restrictions upstream of the MCTMA
system. Demand into the McTMA system would then increase to take
advantage of the increased throughput and utilization due to time based
metering.

e Impact on the takeoff time of internal departures. In this study internal
departures were assumed to takeoff at their actual takeoff time, and additional
delay was absorbed on the ground if needed. MCTMA may impact this takeoff
time resulting in more optimal distribution of delay between air and ground.

The analysis of these additional benefit mechanisms may result in additional benefits
assessment for MCTMA. Additional benefit mechanisms that may have been missed
in this study or for additional MCTMA functionality may also be derived in the
future.

. The benefit estimates also depended on a number of assumptions made about the
MCcTMA operation in the field and about corresponding modeling parameters. Care
was taken to the extent possible to make conservative assumptions and to consult
NASA’'s McTMA researchers and their experience with the tool and in the field.
Through sensitivity analysis arange was tested for many of these assumptions and
parameters to provide arange of corresponding benefit estimates and to assess how
much of an impact such assumptions and parameters have on the benefit estimates.
Most notably, the benefit estimates depended largely on the assumption about the
capacity limitsimposed by MCTMA on the system. A range of such capacities were
tested, ranging from imposing the same capacity applied to the baseline to imposing
the maximum capacity believed acceptable based on safety and operational concerns.
Also while it was assumed that MCTMA'’ s time based metering would be applied
during times of demand exceeding capacity even if MIT was not applied, amore
conservative scenario was provided in the sensitivity analysisin which time based
metering only replaced MIT during the times that MIT was applied.

. Also some of the benefit mechanisms that were modeled and analyzed were only
captured partially due to simplifying assumptions made. For example, the effect of
the dynamic nature of metering (updating STAS every 12 seconds) was not modeled
explicitly. Rather it was captured partially by adjusting for the errors in meeting the
STAsfrom tier to tier. A number of such simplifications needed to be made and care
was taken to make them conservatively.
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FutureWork and Extensions

Additional research may be pursued based on the insights gained in this study.

Some of these research areas are outlined bel ow:

1.

Future research may identify the causes of delay and inefficiency in the actual traffic
data. By listing the sources of delay in the actual data baseline it should be possible to
identify those sources that MCTMA is expected to mitigate and those that it is not.
This analysis requires a detailed diagnosis of the delays and their causes. Each
aircraft should be classified by associating a number of characteristicsto it, such as
the restrictions that affected it during its flight, the number of aircraft it encountered,
its speed, and other factors. More detailed facility logs may be required to obtain
more detailed information.

Future research may also focus on identifying more accurate assumptions about the
operation of MCTMA in the field. These assumptions are key factors in deciding on
the delay sourcesthat MCTMA may mitigate. These assumptions regarding the
operation of MCTMA should be investigated in future research based on more
consultation with McTMA researchers and their experience with MCTMA at PHL.

Future research may continue the effort to build amodel of current operations. This
requires further expert elicitation and more detailed facility logs and track data for
extended periods of time.

While the demand was modeled with high fidelity in this study — using detailed
arrival flow networks, carefully selected meter fixes, and Host track data with 12
second resol ution to estimate unimpeded transition times — there is still need to
further validate and verify the models. Future research should investigate alternative
statistical models and flight path based models to validate the models developed in
this study. More refined classification of flights may also increase the accuracy of the
unimpeded transition times.

Capacity models were generated in this study using ASPM data, which are counts of
traffic in 15-minute periods. While the models were insightful and sufficient to
identify capacity limits, they may be refined and confirmed using more accurate Host
track data. Also more research iswarranted to further investigate the TRACON as a
main flow constraint, which was observed in this study.

The five airports analyzed in this study provide arange of different characteristics.
The benefit estimates were different at the different airport, but minimal time was
available to conduct comparative analysis and gain insight on the causes of the
differences. Future research may conduct more such comparisons, which may also
lead to understanding of the differencesin MCTMA operation at the different airports.
For example, the hypotheses made in this reports about the PHL benefits due to
increased capacity being higher than the other airports benefits because of the bank
schedule may be investigated further and confirmed through studies at other airports.

In this study days with ground delay program were excluded neglecting the impact of
McTMA in terms of reducing GDP delays. The interaction between time-based
metering and strategic ground delay may be investigated in future research. In
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10.

11.

12.

addition the impact on MIT restrictions upstream of the MCTMA system and on
internal departures delay on the ground may also be investigated.

Future research may also investigate determining delay absorption limits for the
TRACON and airspace sectors at optimal values beyond which no further gainsin
throughput may be achieved. This may build on the analysis of the throughput drop
off as demand increases.

Future research may investigate the drop off in arrival throughput at high levels of
demand. This may beinvestigated at additional airports not analyzed in this study in
order to confirm the behavior as a general characteristic. The drop off should also be
confirmed using models based on more accurate Host track data for demand and
throughput measurement. Causes of the drop off should be investigated by combining
other sources of information about restrictions for example.

Extensions to the concept of MCTMA may be researched in the future based on
insights gained in this study. One such extension is the addition of advisories from
rerouting around convective weather within the boundary of the MCTMA system.
This may be achieved, for example, by reallocating aircraft to different stream, which
is not currently afunction of MCTMA.. With the extension of time based metering to
threetiers, the accommodation of local weather constraints within the system
becomes an important aspect. These local constraints may not be reflected by the
acceptance rate, which isthe main explicit constraint that TMA and MCTMA
consider currently.

Future research may also be conducted to develop a more comprehensive economic
model for airline response and collaboration.

Future research may also investigate the benefits of MCTMA for future years
applying improved and more realistic demand forecasting that takes system
constraints into account.
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Appendix A: PHL and N90 Arrival Flows

A.1 Philadelphia TRACON (PHL) Flows

PHL has 4 primary arrival fixes: MAZIE and BUNTS, from ZNY; and TERRI
and Cedar Lake (VCN) from ZDC. These arrival fixes are shown in black in Figure A.1.
The arrival flowsinto Philadelphia TRACON (PHL) are also presented in Figure A.1.

PHL Arrival Flows

== Dominant flows
pemnenetttt Smaller flows
sl Modeled flows

s Meter fix arcs

Figure A.1. Air traffic flows into Philadelphia TRACON.
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Arrival traffic to PHL isto be metered at threetiers, indicated on Figure A.1 by
red arrows (tierl), green arrows (tier 2), and blue arrows (tier 3). Each arrow represents a
different flow that was modeled. Note that not every single actual flow was modeled.
Instead flows were grouped when the flows had similar length and location. Similar
length and location means that the transition times for the flows are likely to be very
similar, and can thus be modeled as a single flow.

Metering arcs are used to a greater extent in the above flow network than is
expected to be used operationally. Thisisto ensure that as much traffic as possibleis
captured, as aircraft routes are identified in the model according to tracks, and not flight
plans, asin TMA. Meter arcs are illustrated on the figure by thick gray lines, with colored
arcs associated with them. The gray lines show the metering windows through which the
aircraft must pass to be considered to be on that flow, while the arcs are where crossing
times and locations are recorded.

MCcTMA deployment for PHL is currently underway, and the above fixes have
only been tentatively established, and will be adjusted based on feedback from
operational testing.

A.2 New York TRACON (N90) Flows

Based on feedback from MCTMA NASA researchersit is assumed that MCTMA
will only be implemented for Newark, LaGuardia, JFK and Teterboro airports. Each of
Newark, LaGuardia and JFK have separate arrival fixes. These are presented in Table 39
below, and were determined according to the Standard Operating Procedures (SOP) for
N9O, letters of agreement (LOAS) between N90 and the appropriate ARTCC, and
interviews with TMCs.

Table 39
Destination Airport Origin ARTCC Arrival Fix Traffic
EWR ZBW SHAFF Jets/Hptp
LEMOR Props
ZNY PENNS Jets/Hptp
ZDC Yardley (ARD) TBD
LGA ZBW VALRE Jets/Hptp
NOBBI Props
ZNY LIZZI Jets/Props
ZDC Robbinsville (RBV) TBD
JFK ZBW Calverton (CCC) All
LOVES Props
ZNY LENDY All
CAMRN TBD
ZIGGI Props
TEB ZBW LEMOR Jets/Props
ZNY MUGZY Jets/Hptp

In Table 39, Hptp refers to high performance turboprop aircraft, and TBD (to be
determined) to information that is unclear and must be determined through further
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interviews with TMCs. Particularly, Yardley (ARD) and Robbinsville (RBV), the
primary arrival fixes for Newark and LaGuardiafrom ZDC, were flipped in the summer
of 2002, which has improved operations significantly, as the two flows do not need to be
crossed, as before. The details of the traffic on each fix are still to be determined from
TMCsat N9O.

The primary flowsinto New Y ork TRACON have been identified, and are
presented in Figure A.2 to Figure A.5.

EWR Arrival Flows s

.....
BREW

m— Dominant flows
semrtt Smaller flows

sl Modeled flows

- s \Meter fix arcs

Figure A.2. Air traffic flows for Newark Internationa Airport (EWR).
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LGA Arrival Flows

m————— Dominant flows
rereenstttt Smaller flows

sl \odeled flows

 mm—\Meter fix arcs

Figure A.3. Air traffic flows for LaGuardia Airport (LGA).
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JFK Arrival Flows

= Dominant flows
sreesett Smaller flows
sl Modeled flows

" m— \eter fix arcs

Figure A.4. Air traffic flows for John F Kennedy International Airport (JFK).

Flowsinto JFK from ZDC must transition from ZDC to ZNY, and then to N90.
Thereis no direct transition from ZDC to N90 for JFK traffic.
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TEB Arrival Flows

————— Dominant flows
rereeesttt Smaller flows

‘e, . '

5 sl Modeled flows

s Meter fix arcs

Figure A.5. Air traffic flows for Teterboro Airport (TEB).

The flows presented in Figure A.2 to Figure A.5 were identified according to
STARS, flows illustrated in presentations by ZOB (Traffic Management Unit, by
Cleveland ARTCC, FAA) and ZBW (Boston ARTCC, by Boston ARTCC, FAA), and

flows presented by NASA for PHL (Distributed Scheduling for McTMA, by Todd Farley
and Steve Landry, NASA Ames Research Center), and according to host track data from

September 12, September 17, and September 19, 2002.



Appendix B: ASPM Capacity Analysis

Following is a capacity analysis of the four primary airportsin New York (EWR,
JFK, LGA and TEB), and of Philadelphiaairport (PHL). The analysisis performed using
the Aviation System Performance Metrics (ASPM) database, obtained through NASA
and the FAA (http://www.apo.data.faa.gov/faamatsall.HTM). The results of the capacity
analysis are separated by airport and airport configuration. Because the data used in the
simulation of MCTMA isfrom August 2002 and September 2002, the frequency of the
different configurations at each airport is plotted for these two months. The demand at the
airports was not, however, as great in these months as it was before September 11, 2001.
In order to accurately analyze the capacity of the airports the data analyzed must include
the periods of highest demand. Consequently, for the capacity analysis, data from January
to August of 2001 was chosen for processing. The summer months are the period of
highest demand, so data from the summer of 2000 was a so included to enhance the data
from the summer of 2001. This choice of data ensures that the maximum airport
capacities determined in the analysis are representative of the actual maximum capacities
of the airports.

B1. Newark International Airport EWR

AAR Frequency

The frequency of different AARs are plotted below. The data used is that from the
summer of 2000, and from the winter, spring, and summer of 2001. The data used is per
hour, as AARs are reported as hourly rates.

20
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Figure B1. Frequency of reported AARS.
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AARs of 34, 38, 40 and 44 are examined in more detail below. These are the
AARs reported on the days analyzed in the RTO 77 study.

B1.1. Airport Acceptance Rate of 34 aircraft per hour

Throughput versus Demand

In order to identify airport capacity, throughput is plotted against arrival demand
in the charts below. The data used is that from the summer of 2000, and from the winter,
spring, and summer of 2001.

In thefirst of the charts below, quarter hourly throughput is plotted against
corresponding demand. In order to represent rates by the hour the values for throughput
and demand are multiplied by four. All data points are plotted. This alowsfor the
identification of the absolute maximum arrival capacity. Quarter hourly intervals may
include some intervals with only arrivals, and may include intervals with consistently
high demand. The capacity identified would thus not be sustainable over time, but is
applicable for short periods.

The frequency of the data is presented alongside the raw data. The gray scale
denotes the number of data countsin 4 aircraft per hour by 4 aircraft per hour bins. The
maximum frequency on the scale to the right is approximately half the highest number of
data pointsin any single bin.

The frequency of the demand is presented beneath the raw data. This chart allows
one to identify if there are enough data points at critical points (such as the drop-off in
throughput) to verify the conclusions.

Finally, alongside the frequency of demand, the moving average of the throughput
is plotted against demand, with error bars representing one standard deviation in each
direction. The window size for the calculation of the moving average is 10 aircraft per
hour. The point at which the data drops off isidentified heuristically, as that point at
which the average throughput drops off at 2% over one bin (4 aircraft per hour), and for
which the average of the rest of the points after this bin islower than the 80% of the
value of the average throughput in this bin. This heuristic was identified after manual
experimentation with the data. A hyperbolic fit to the moving average for those points,
before any drop-off, is aso plotted on the graph. The hyperbolic fit asymptotes to the 45°
line on the left (throughput equal to demand) and to the horizontal on the right, which
represents the maximum throughput according to the trend of the moving averages before
the drop-off.
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Figure B2. Airport throughput plotted against demand — raw data plot, contour frequency
plot, demand frequency plot, and moving average plot with hyperbolic curvefit.

According to these graphs, the 98, 99 and 100" percentile of the throughput is
calculated, along with the lowest corresponding demand. These values are presented in
the table below. These values of throughput represent the capacity of the airport, while
the corresponding values of demand represent the limits of demand that are high enough
to reach the capacity of the airport. Also presented in the table below are the variables
associated with hyperbolic curve fit (the asymptote and vertex ‘a’). The asymptote also
represents the capacity of the airport according to the averages of the data. Finaly the
maximum value of the moving average, to the left of the drop-off point; and the
coordinates of the drop-off point, are presented.
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Throughput [a/c per hr]

Per centile of Throughput Demand | Throughput
[a/c per hr] | [alc per hr]
98 52 52
99 56 56
100 80 64
Hyperbolic Fit Asymptote 40
Hyperbolic Vertex ‘a 4
Moving Average M ax 56 40
Moving Aver age Dr op-off 64 39

B1.2. Airport Acceptance Rate of 38 aircraft per hour

Throughput versus Demand

In order to identify airport capacity, throughput is plotted against arrival demand

in the charts below.
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Figure B3. Airport throughput plotted against demand — raw data plot, contour frequency
plot, demand frequency plot, and moving average plot with hyperbolic curvefit.

Per centile of Throughput Demand | Throughput
[a/lc per hr] | [alc per hr]
98 52 52
99 56 56
100 72 68
Hyperbolic Fit Asymptote 44
Hyperbolic Vertex ‘a’ 4
Moving Average M ax 56 44
M oving Aver age Dr op-off 64 43

B1.3. Airport Acceptance Rate of 40 aircraft per hour

Throughput versus Demand

In order to identify airport capacity, throughput is plotted against arrival demand

in the charts below.
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Figure B4. Airport throughput plotted against demand — raw data plot, contour frequency
plot, demand frequency plot, and moving average plot with hyperbolic curvefit.

Per centile of Throughput Demand | Throughput
[alc per hr] | [alc per hr]
98 52 52
99 56 56
100 72 68
Hyperbolic Fit Asymptote 44
Hyperbolic Vertex ‘a 4
Moving Average M ax 56 48
Moving Aver age Dr op-off 64 48
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B1.4. Airport Acceptance Rate of 44 aircraft per hour

Throughput versus Demand
In order to identify airport capacity, throughput is plotted against arrival demand

in the charts below.
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Figure B5. Airport throughput plotted agains7t demand — raw data plot, contour
frequency plot, demand frequency plot, and moving average plot with hyperbolic curve
fit.
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Per centile of Throughput Demand | Throughput
[a/c per hr] | [alc per hr]
98 52 52
99 56 56
100 88 76
Hyperbolic Fit Asymptote 49
Hyperbolic Vertex ‘@& 5
Moving Average M ax 68 438
Moving Aver age Dr op-off 68 48
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B2. John F Kennedy International Airport JFK

AAR Frequency

The frequency of different AARs are plotted below. The data used is that from the
summer of 2000, and from the winter, spring, and summer of 2001. The data used is per
hour, as AARs are reported as hourly rates.
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Figure B6. Frequency of reported AARS.

AARs of 33, 35 and 51 are examined in more detail below. These arethe AARS
reported on the days analyzed in the RTO 77 study.

B2.1. Airport Arrival Rate 33 aircraft per hour

Throughput versus Demand

In order to identify airport capacity, throughput is plotted against arrival demand
in the charts below.
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Figure B7. Airport throughput plotted against demand — raw data plot, contour frequency
plot, demand frequency plot, and moving average plot with hyperbolic curvefit.

Per centile of Throughput Demand | Throughput
[alc per hr] | [alc per hr]
98 40 40
99 44 44
100 76 68
Exponential Fit Asymptote a4
Hyperbolic Vertex ‘a 5
Moving Average M ax 60 43
Moving Aver age Dr op-off 60 43
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Throughput [a/c per hr]

Frequency

B2.2. Airport Arrival Rate 35 aircraft per hour

Throughput versus Demand

In order to identify airport capacity, throughput is plotted against arrival demand

in the charts below.
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Figure B8. Airport throughput plotted against demand — raw data plot, contour frequency
plot, demand frequency plot, and moving average plot with hyperbolic curvefit.
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B2.3. Airport Arrival Rate 51 aircraft per hour

Throughput versus Demand

In order to identify airport capacity, throughput is plotted against arrival demand

in the charts below.
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Figure B9. Airport throughput plotted against demand — raw data plot, contour frequency
plot, demand frequency plot, and moving average plot with hyperbolic curvefit.

Per centile of Throughput Demand | Throughput
[a/lc per hr] | [alc per hr]
98 56 56
99 60 60
100 72 72
Exponential Fit Asymptote 60
Hyperbolic Vertex ‘a’ 7
Moving Average M ax 88 72
M oving Aver age Dr op-off 92 72
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B3. LaGuardia Airport LGA

AAR Frequency

The frequency of different AARs are plotted below. The data used is that from the
summer of 2000, and from the winter, spring, and summer of 2001. The data used is per
hour, as AARs are reported as hourly rates.
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Figure B10. Frequency of reported AARS.

AARsof 31, 34, 39 and 42 are examined in more detail below. These are some of
the AARs reported on the days analyzed in the RTO 77 study.

B3.1. Airport Arrival Rate 31 aircraft per hour

Throughput versus Demand

In order to identify airport capacity, throughput is plotted against arrival demand
in the charts below.
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Figure B11. Airport throughput plotted against demand — raw data plot, contour
frequency plot, demand frequency plot, and moving average plot with hyperbolic curve

fit.
Per centile of Throughput Demand | Throughput
[a/c per hr] | [alc per hr]
98 48 48
99 52 52
100 72 64
Exponential Fit Asymptote 41
Hyperbolic Vertex ‘a 4
Moving Average M ax 52 39
M oving Aver age Dr op-off 52 39
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Throughput [a/c per hr]

Frequency

B3.2. Airport Arrival Rate 34 aircraft per hour

Throughput versus Demand

In order to identify airport capacity, throughput is plotted against arrival demand

in the charts below.
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Figure B12. Airport throughput plotted against demand — raw data plot, contour
frequency plot, demand frequency plot, and moving average plot with hyperbolic curve

fit.
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B3.3. Airport Arrival Rate 39 aircraft per hour

Throughput versus Demand
In order to identify airport capacity, throughput is plotted against arrival demand

in the charts below.

|
= = — — — ©90000000000000900000000 000000000 — ¢ — | — ®— — — —

00/0000000000000600000 ¢ 0 00 o o .
| | |

.ool‘oooooocooooc“ooooo oo oo ! 00 coee

000000000000000000000000000

L]
e _ 1%
L]

Demand [a/c per hr]

70,

60

50

40

30

Throughput [a/c per hr]

20

10

=)
©

50

100

150

Demand [a/c per hr]

200

B-17

300

250

200

150

+100

450



Frequency

~
o
o

D
o
o

u
o
o

N
o
o

w
o
o

N
o
o

=
o
o

o

o

50 100 150 200
Demand [a/c per hr]

Figure B13. Airport throughput plotted against demand — raw data plot, contour
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frequency plot, demand frequency plot, and moving average plot with hyperbolic curve

fit.
Per centile of Throughput Demand | Throughput
[a/c per hr] | [alc per hr]
98 52 52
99 52 52
100 112 68
Exponential Fit Asymptote 41
Hyperbolic Vertex ‘& 3
Moving Average M ax 52 40
Moving Aver age Dr op-off 56 39

B3.4. Airport Arrival Rate 42 aircraft per hour

Throughput versus Demand

In order to identify airport capacity, throughput is plotted against arrival demand

in the charts below.
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Figure B14. Airport throughput plotted against demand — raw data plot, contour

frequency plot, demand frequency plot, and moving average plot with hyperbolic curve

fit.

Per centile of Throughput Demand | Throughput
[a/lc per hr] | [alc per hr]
98 52 52
99 56 56
100 80 64
Exponential Fit Asymptote 45
Hyperbolic Vertex ‘a 3
Moving Average M ax 60 45
M oving Aver age Dr op-off 68 a4
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B4. Philadelphia International Airport PHL

AAR Frequency

The frequency of different AARs are plotted below. The data used is that from the
summer of 2000, and from the winter, spring, and summer of 2001. The data used is per
hour, as AARs are reported as hourly rates.
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Figure B15. Frequency of reported AARSs for this configuration.

AARs of 36 and 52 are examined in more detail below. These arethe AARS
reported on the days analyzed in the RTO 77 study.

B4.1. Airport Arrival Rate 36 aircraft per hour

Throughput versus Demand

In order to identify airport capacity, throughput is plotted against arrival demand
in the charts below.
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Figure B16. Airport throughput plotted against demand — raw data plot, contour
frequency plot, demand frequency plot, and moving average plot with hyperbolic curve
fit.

Per centile of Throughput Demand | Throughput
[a/lc per hr] | [alc per hr]

98 56 56

99 60 60

100 76 76
Exponential Fit Asymptote 41
Hyperbolic Vertex ‘a 6
Moving Average M ax 72 40
M oving Aver age Dr op-off 76 40
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Throughput [a/c per hr]

Frequency

B4.2. Airport Arrival Rate 52 aircraft per hour

Throughput versus Demand
In order to identify airport capacity, throughput is plotted against arrival demand

in the charts below.
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Figure B17. Airport throughput plotted against demand — raw data plot, contour
frequency plot, demand frequency plot, and moving average plot with hyperbolic curve
fit.
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Per centile of Throughput Demand | Throughput
[a/c per hr] | [alc per hr]
98 68 68
99 72 72
100 100 92
Exponential Fit Asymptote 61
Hyperbolic Vertex ‘@& 8
Moving Average M ax 104 60
Moving Aver age Dr op-off 104 60
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Throughput [a/c per hr]

B5. Teterboro Airport TEB

AAR Frequency

The frequency of different AARs are plotted below. The data used is that from the
summer of 2000, and from the winter, spring, and summer of 2001. The data used is per

hour, as AARs are reported as hourly rates.
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Figure B18. Frequency of reported AARS.

Throughput versus Demand

AAR [a/c per hr]

In order to identify airport capacity, throughput is plotted against arrival demand

in the charts below.
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Figure B19. Airport throughput plotted against demand — raw data plot, contour
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frequency plot, demand frequency plot, and moving average plot with hyperbolic curve

fit.

Per centile of Throughput Demand | Throughput
[a/lc per hr] | [alc per hr]
98 28 28
99 28 28
100 56 52
Exponential Fit Asymptote 43
Hyperbolic Vertex ‘a 9
Moving Average M ax 60 43
M oving Aver age Dr op-off No drop-off

B-25



B6. New York TRACON N90

The data from EWR, JFK, LGA and TEB is combined for those days for which
all data sets have data. In thefirst set of results al the datais plotted. In subsequent
sections the results are presented for specific combinations of airport configurations.

AAR Frequency

The frequency of different AARs are plotted below. Hourly datais used because
AARs are generally reported as hourly rates.
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Figure B20. Frequency of reported AARS.

B6.1. AAR of 142 aircraft per hour

Throughput versus Demand

In order to identify TRACON capacity, throughput is plotted against arrival
demand in the charts below.
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Figure B21. TRACON throughput plotted against demand — raw data plot, contour
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B6.2. AAR of between 139 and 142 aircraft per hour

In order to identify TRACON capacity, throughput is plotted against arrival
demand in the charts below. A frequency contour plot is not included as the frequency of
data points in the 4 aircraft per hour by 4 aircraft per hour binsis never greater than 1.

Throughput versus Demand
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Figure B22. TRACON throughput plotted against demand — raw data plot, contour

frequency plot, demand frequency plot, and moving average plot with hyperbolic curve

fit.
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Frequency

Per centile of Throughput Demand | Throughput
[a/c per hr] | [alc per hr]

98 152 152

99 160 160

100 248 196
Exponential Fit Asymptote 133
Hyperbolic Vertex ‘@& 14
Moving Average M ax 176 131
Moving Aver age Dr op-off 196 124

B6.3. EWR AAR of 44 ac/hr, JFK AAR of 33 ac/hr, LGA AAR of 39
ac/hr, and TEB AAR of ac/hr (giving N90 AAR of 148 ac/hr).
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Figure B23. TRACON throughput plotted against demand — raw data plot, contour frequency plot,
demand frequency plot, and moving average plot with hyperbolic curve fit.
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Per centile of Throughput Demand | Throughput
[a/c per hr] | [alc per hr]

98 136 136

99 152 144

100 192 156
Exponential Fit Asymptote 120
Hyperbolic Vertex ‘@& 12
Moving Average M ax 152 121
Moving Aver age Dr op-off 152 121
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B7. Observations

A number of observations were made from the plots of throughput versus
demand. These are as follows:

1. The magjority of the data points lie along the leading edge of the curve (45°
radial). Generally there are more points on the leading edge at lower demand than
higher. This suggests that the points of very higher demand occur relatively less
frequently. It also suggests that data points in which demand is high and
throughput islow are infrequent. Thus, demand is generally matched by capacity.

2. All the curves show a maximum throughput. However, the degree to which the
curves appear to saturate to this maximum varies. It is suggested that the degree to
which a configuration saturates indicates the degree to which it is constrained by
runways. Thisis supported by a number of observations, as follows:

2.1. Both high and low capacity (AAR) configurations at PHL show clear
saturation to the maximum throughput. According to NASA McTMA
researchers, PHL is highly constrained by runway constraints.

2.2. Thehigh capacity configuration at JFK shows no saturation. At high
capacity JFK is expected to have few runway constraints.

2.3. EWR and LGA show more saturation than JFK, but not as much as PHL.
Both airports are constrained by runwaysto a certain extent, but are also
expected to be constrained by the airspace.

2.4. Thelow capacity configurations (at JFK, LGA, and PHL) show more
saturation than the higher capacity configurations. Runway limitations are
likely to be agreater constraint in low capacity configurations than high
capacity configurations, supporting the suggestion that the degree of
saturation relates to runway constraints.

3. Almost al curves show a drop-off in throughput at high demand. The location of
this drop-off relative to the peak in throughput varies, however. It is suggested
that the position of the drop-off relative to the peak in throughput is an indication
of the ability to maintain pressure on the runway, when at maximum capacity,
through such techniques as a managed reservoir. Thisis supported by a number of
observations, as follows:

3.1. Thedrop-off at PHL islater than at the N9O airports. PHL does operate a
managed reservoir, according to NASA McTMA researchers, and is thus
expected to be able to maintain throughput at capacity for longer.

3.2. Thedrop-off in capacity occurs directly after the peak in throughput at all
airports within N90. N90 does not operate a managed reservoir, and is
unable to hold aircraft near their destination airports because of airspace
constraints. Instead the flow must be held further upstream, effectively
switching off the flow at the airport. Thisis expected to lead to a sudden
drop off immediately after the peak in throughput, as observed.
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4. The degree to which the throughput drops off also varies by configuration. Itis
suggested that this indicates how efficiently aircraft can be held for an airport.
Thisissimilar to the managed reservoir, but applies to operations further
upstream as well. The suggestion is supported by the following observations:

4.1. Thelevel to which the throughput drops remains approximately the same
between the high and low capacity configurations (at JFK, LGA and
PHL). This suggests that these levels are afunction of constraints
upstream from the airport, such as holding capacity upstream.

4.2. Thedrop-off at JFK, LGA and EWR is severe (most severe at JFK). N90
isnot able to hold aircraft near the airport, and consequently, when
demand exceeds capacity, the throughput is expected to drop significantly
because aircraft must be held well outside N9O.

4.3. Thedrop-off in throughput for all airports within N90 combined is also
significant, although not as severe as that for each airport respectively.
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Appendix C: ASPM Capacity Utilization Analysis

Following is a capacity utilization analysis of the four primary airportsin New
York (EWR, JFK, LGA and TEB), and of Philadelphiaairport (PHL). Asin Appendix B,
the analysis is performed using the Aviation System Performance Metrics (ASPM)
database, obtained through NASA and the FAA
(http://www.apo.data.faa.gov/faamatsall. HTM). The results of the capacity utilization
analysis are separated by airport. In order to accurately analyze the capacity utilization of
the airports the data analyzed must include the periods of highest demand. Consequently
data from January to August of 2001 was chosen for processing. The summer months are
the period of highest demand, so data from the summer of 2000 was a so included to
enhance the data from the summer of 2001. This choice of data ensures that the
maximum airport capacity utilizations determined in the analysis are representative of the
actual maximum capacity utilization of the airports.

Cl. Newark International Airport EWR

Capacity utilization is plotted for asingle airport configuration below, filtering for
high demand periods only, followed by a plot of capacity utilization for al airport
configurations combined, with no filtering for high demand. The configuration plotted is
one of the commonly operated configurations at EWR.

C1.1. Configuration 3 — 22L | 22R

Actual arrival throughput is plotted against specified AAR in order to identify the
degree to which the available capacity is being utilized. Only data with demand high
enough to utilize the airport’ s maximum capacity is plotted. This thus excludes data
points from the chart for which throughput was low simply because demand was low.
Demand isidentified as being high enough to utilize the airport’ s maximum capacity
according to a specified demand threshold. This demand threshold is specified as the
lowest demand for which the throughput reaches the 98™ percentile of throughput
identified in the capacity analysisin Appendix B. In the case below thisis 56 aircraft per
hour.

The frequency of the datais plotted alongside the raw data. Again, the frequency
iscalculated in 4 aircraft per hour by 4 aircraft per hour bins. The average of the data, for
each 4 aircraft per hour bin of AAR, is aso presented on the graph, with error bars of one
standard deviation. In many cases the error is so small as not to be visible on the plot. A
linear least squaresfit to these averages is aso included as a dotted line. The diagonal
straight line from corner to corner represents 100% utilization of the AAR.

The charts below show quarter hourly data, although the values for throughput
and AAR are multiplied by four in order to represent rates by the hour.
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Figure C1. Airport utilization — raw data plot, and contour frequency plot.

The arrival rate above which capacity is underutilized by high demand is
estimated as the point at which the linear fit to the averages crosses the diagonal 100%
AAR utilization line. Thisis asfollows:

| Under utilization AAR | 36 alc per hr |

C1.2. All EWR Configurations
The following plot shows all data points, with no filtering for high demand only:
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Figure C2. Airport utilization — raw data plot.
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Actual Arrival Throughput [a/c per hr]

C2. John F Kennedy International Airport JFK

C2.1. Configuration 2 —13L | 13R

In the following chart actual arrival throughput is plotted against specified AAR
in order to identify the degree to which the available capacity is being utilized. Only data
with demand high enough to utilize the airport’ s maximum capacity is plotted. The
threshold according to which demand isfiltered is 44 aircraft per hour.
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Figure C3. Airport utilization — raw data plot, and contour frequency plot.
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Figure C4. Airport utilization — raw data plot.

C-3



70

Actual Arrival Throughput [a/c per hr]
[o2]
o

=
o

a1
o

N
o

w
o

N
o

C3. LaGuardia Airport LGA

C3.1. Configuration 3 -22 | 13

In the following chart actual arrival throughput is plotted against specified AAR
in order to identify the degree to which the available capacity is being utilized. Only data
with demand high enough to utilize the airport’ s maximum capacity is plotted. The
threshold according to which demand isfiltered is 52 aircraft per hour.
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Figure C5. Airport utilization — raw data plot, and contour frequency plot.
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C4. Philadelphia International Airport PHL

C4.1. Configuration 4 — 26, 27R, 35| 27L, 35

In the following chart actual arrival throughput is plotted against specified AAR
in order to identify the degree to which the available capacity is being utilized. Only data

with demand high enough to utilize the airport’ s maximum capacity is plotted. The

threshold according to which demand isfiltered is 68 aircraft per hour.
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Figure C7. Airport utilization — raw data plot, and contour frequency plot.
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C5. Teterboro Airport TEB

Configurations were not detailed in the data on TEB. Consequently all data shall

be analyzed as if it were a single configuration.

In the following chart actual arrival throughput is plotted against specified AAR
in order to identify the degree to which the available capacity is being utilized. Only data
with demand high enough to utilize the airport’ s maximum capacity is plotted. The
threshold according to which demand isfiltered is 28 aircraft per hour.

o
o

N
o

n
o

Actual Arrival Throughput [a/c per hr]
w
o

=
o

0 10 20 30 40 50 60

AAR [a/c per hr]

60

Frequency Contour Map

x--X Average
10 20 30 40 50
AAR [a/c per hr]

Figure C9. Airport utilization — raw data plot, and contour frequency plot.
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C6. New York TRACON N90

The data from EWR, JFK, LGA and TEB is combined for those days for which
all data sets have data. All this datais plotted as different combinations of configurations
are not identified.

In the following chart actual arrival throughput is plotted against specified AAR
in order to identify the degree to which the available capacity is being utilized. Only data
with demand high enough to utilize each airport’s maximum capacity (according to the
configurations analyzed above) is plotted. The threshold according to which demand is
filtered is 148 aircraft per hour.
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Figure C10. Airport utilization — raw data plot, and contour frequency plot.
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The following plot shows all data points, with no filtering for high demand only:
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Figure C11. Airport utilization — raw data plot.
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C7.

Observations

A number of observations were made from the plots of arrival throughput versus

AAR. These were as follows:

1.

The majority of data pointsfall close to the line of 100% utilization in amost all
cases (except TEB), when low demand isfiltered out.

As AAR increases average utilization decreases from being greater than 1 for low
AAR to being lessthan 1 for high AAR, for al airports.

For N90 alone is average utilization lessthan 1 for all AARs. Thisisin contrast to
utilization at the airports at low AAR, which are greater than 1. This suggests that
when the AAR at one airport islow, and the throughput high, the throughput at
other airports within N9O is low. This suggests that there is an interaction between
the airports within N9O, and that the N9O airspace is a constraint.

All airports within N9O are over-utilized (throughput higher than AAR) by a
significant degree in some periods. N90 however, although over-utilized during
some periods, is over-utilized by only asmall degree. This suggests that the
AARs specified are more representative of the capacity of N90, and not of the
individual airports. This suggests that N90 is the primary flow constraint, and not
the airports, as suggested through interviews with TMCs at N90 in November,
2002. If the capacity of N90 were to be increased, it is thus suspected that the
AARs specified at each airport could be increased. Thisincrease would vary from
airport to airport.
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Appendix D: ASPM Analysis of Capacity Envelopes

Following is a capacity analysis of the four primary airportsin New York (EWR,
JFK, LGA and TEB), and of Philadelphiaairport (PHL). Asin Appendix B and C, the
analysisis performed using the Aviation System Performance Metrics (ASPM) database,
obtained through NASA and the FAA (http://www.apo.data.faa.gov/faamatsall. HTM).
The results of the analysis are separated by airport. In order to accurately identify the
capacity envelopes of the airports the data analyzed must include the periods of highest
demand. Consequently data from January to August of 2001 was chosen for processing.
The summer months are the period of highest demand, so data from the summer of 2000
was also included to enhance the data from the summer of 2001.

D1. Newark International Airport EWR

Capacity envelopes are plotted for asingle airport configuration below. The
configuration plotted is one of the commonly operated configurations at EWR.

D1.1. Configuration 3 - 22L | 22R

Capacity Envelopes

Arrival throughput is plotted against departure throughput in the figures below in
order to identify the capacity envelopes for the airport.

In the charts quarter hourly arrival throughput is plotted against departure
throughput. All data points are plotted. In order to represent rates by the hour the values
for throughput and demand are multiplied by four.

The frequency of the data presented in the first chart is plotted alongside it, where
the gray scale represents frequency. The frequency is again calculated in 4 aircraft per
hour by 4 aircraft per hours bins.

Finally, below these charts, capacity envelopes are presented for the 100" to 80™
percentile, in 4% increments. These percentiles are calculated for arrival throughput in 4
aircraft per hour bins of departure throughput. This alows departure throughput to be
specified, and a corresponding arrival throughput to be identified from the envel ope.
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Throughput Percentile Envelopes (based on Departure Throughput)

80

70

Arrival Throughput [a/c per hr]
[y N w N al o)
o o o o o o

o

Arrival and Departure Throughput Frequency Contour Map

80

D ~
o o

a1
o

Arrival Throughput [a/c per hr]
w I
o o

N
o

=
o

o

10

20
Departure Throughput [a/c per hr]

20 30 40 50 60
Departure Throughput [a/c per hr]

70

80

40

80

400

350

300

250

200

150

100

50



D2. John F Kennedy International Airport JFK

Capacity envelopes are plotted for asingle airport configuration below. The
configuration plotted is one of the commonly operated configurations at JFK.

D2.1 Configuration 2 — 13L | 13R

Capacity Envelopes

Arrival throughput is plotted against departure throughput in the figures below in
order to identify the capacity envelopes for the airport.
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Figure D2. Airport capacity envelopes — raw data plot, contour frequency plot, and
percentile envel opes.
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D3. LaGuardia Airport LGA

Capacity envelopes are plotted for asingle airport configuration below. The
configuration plotted is one of the commonly operated configurations at LGA.

D3.1. Configuration 1 — 13| 13

Capacity Envelopes

Arrival throughput is plotted against departure throughput in the figures below in
order to identify the capacity envelopes for the airport.
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Figure D3. Airport capacity envelopes — raw data plot, contour frequency plot, and

percentile envel opes.
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D4. Philadelphia International Airport PHL

Capacity envelopes are plotted for asingle airport configuration below. The
configuration plotted is one of the commonly operated configurations at PHL.

D4.1. Configuration 4 — 26, 27R, 35| 27L, 35

Capacity Envelopes

Arrival throughput is plotted against departure throughput in the figures below in
order to identify the capacity envelopes for the airport.
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